{"title":"局部紧化度量空间上的Lipschitz自由空间","authors":"C. Gartland","doi":"10.4064/SM200511-10-10","DOIUrl":null,"url":null,"abstract":"We prove that the Lipschitz free space over a certain type of discrete metric space has the Radon-Nikodým property. We also show that the Lipschitz free space over a complete, locally compact metric space has the Schur or approximation property whenever the Lipschitz free space over each compact subset also has this property.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lipschitz free spaces over locally compact metric spaces\",\"authors\":\"C. Gartland\",\"doi\":\"10.4064/SM200511-10-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Lipschitz free space over a certain type of discrete metric space has the Radon-Nikodým property. We also show that the Lipschitz free space over a complete, locally compact metric space has the Schur or approximation property whenever the Lipschitz free space over each compact subset also has this property.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/SM200511-10-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/SM200511-10-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lipschitz free spaces over locally compact metric spaces
We prove that the Lipschitz free space over a certain type of discrete metric space has the Radon-Nikodým property. We also show that the Lipschitz free space over a complete, locally compact metric space has the Schur or approximation property whenever the Lipschitz free space over each compact subset also has this property.