基于核函数带宽和小波变换的二维孔隙度和渗透率特征的分层同步上尺度化:在SPE-10模型中的应用

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS
M. Azad, A. Kamkar-Rouhani, B. Tokhmechi, M. Arashi
{"title":"基于核函数带宽和小波变换的二维孔隙度和渗透率特征的分层同步上尺度化:在SPE-10模型中的应用","authors":"M. Azad, A. Kamkar-Rouhani, B. Tokhmechi, M. Arashi","doi":"10.2516/OGST/2021006","DOIUrl":null,"url":null,"abstract":"In this paper, two methods of kernel bandwidth and wavelet transform are used for simultaneous upscaling of two features of hydrocarbon reservoir. In the bandwidth method, the criterion for upscaling is the cell variability, and by calculating the optimal bandwidth and determining the distance matrix, the upscaling process is performed in a completely non-uniform and unregularly manner. In areas with extreme variability, the bandwidth is considered small enough to maintain the fine scale characteristics of model. Conversely in homogenous areas, with the choice of large bandwidth, the maximum rate of upscaling will occur. The bandwidth upscaling algorithm is an iterative and hierarchical algorithm. The bandwidth method, unlike conventional scale-up methods, focuses on how to upgrid cells and, by determining the optimal averaging window, we will have the least loss information for the fine scale model. Upscaling is a pre-processing to building a simulator model with lower cell number, and thus, reducing volume and computational cost, while maintaining and retaining the basic information of the fine model. Due to the various variability of the reservoir features, the attribute upscaling pattern differs, and in order to show the variability of two features in the upscaling model simultaneously, it is suggested in this paper to upscale two features simultaneously. For simultaneous upscaling, we applied two different approaches; minimum and maximum bandwidth. Moreover, wavelet transformation is applied to upscaling the model. Then, as a result, the variance of the scale-up models based on wavelet is about one-third of the variance of the bandwidth method. Simulation results show that the bandwidth method is a good approach for upscaling the heterogeneous reservoirs.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical simultaneous upscaling of porosity and permeability features using the bandwidth of kernel function and wavelet transformation in two dimensions: Application to the SPE-10 model\",\"authors\":\"M. Azad, A. Kamkar-Rouhani, B. Tokhmechi, M. Arashi\",\"doi\":\"10.2516/OGST/2021006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two methods of kernel bandwidth and wavelet transform are used for simultaneous upscaling of two features of hydrocarbon reservoir. In the bandwidth method, the criterion for upscaling is the cell variability, and by calculating the optimal bandwidth and determining the distance matrix, the upscaling process is performed in a completely non-uniform and unregularly manner. In areas with extreme variability, the bandwidth is considered small enough to maintain the fine scale characteristics of model. Conversely in homogenous areas, with the choice of large bandwidth, the maximum rate of upscaling will occur. The bandwidth upscaling algorithm is an iterative and hierarchical algorithm. The bandwidth method, unlike conventional scale-up methods, focuses on how to upgrid cells and, by determining the optimal averaging window, we will have the least loss information for the fine scale model. Upscaling is a pre-processing to building a simulator model with lower cell number, and thus, reducing volume and computational cost, while maintaining and retaining the basic information of the fine model. Due to the various variability of the reservoir features, the attribute upscaling pattern differs, and in order to show the variability of two features in the upscaling model simultaneously, it is suggested in this paper to upscale two features simultaneously. For simultaneous upscaling, we applied two different approaches; minimum and maximum bandwidth. Moreover, wavelet transformation is applied to upscaling the model. Then, as a result, the variance of the scale-up models based on wavelet is about one-third of the variance of the bandwidth method. Simulation results show that the bandwidth method is a good approach for upscaling the heterogeneous reservoirs.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2021006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

摘要

本文采用核带宽和小波变换两种方法,对油气储层的两种特征进行同步上尺度变换。在带宽法中,升级的判据是单元的可变性,通过计算最优带宽和确定距离矩阵,使升级过程完全不均匀和不规则地进行。在极端变异性区域,认为带宽足够小以保持模型的精细尺度特征。相反,在均匀区域,随着带宽的选择,将出现最大的升级率。带宽升级算法是一种迭代的分层算法。与传统的按比例放大方法不同,带宽方法侧重于如何使网格单元升级,并通过确定最佳平均窗口,我们将获得最小的细比例模型损失信息。升级是在保持和保留精细模型基本信息的前提下,为构建具有较少单元数的仿真模型而进行的预处理,从而减少体积和计算成本。由于储层特征的变异性不同,属性上标模式也不同,为了在上标模型中同时显示两个特征的变异性,本文建议对两个特征同时进行上标。为了同时升级,我们采用了两种不同的方法;最小和最大带宽。在此基础上,利用小波变换对模型进行上尺度变换。结果表明,基于小波变换的放大模型的方差约为带宽放大模型方差的三分之一。仿真结果表明,带宽法是一种很好的非均质储层放大方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical simultaneous upscaling of porosity and permeability features using the bandwidth of kernel function and wavelet transformation in two dimensions: Application to the SPE-10 model
In this paper, two methods of kernel bandwidth and wavelet transform are used for simultaneous upscaling of two features of hydrocarbon reservoir. In the bandwidth method, the criterion for upscaling is the cell variability, and by calculating the optimal bandwidth and determining the distance matrix, the upscaling process is performed in a completely non-uniform and unregularly manner. In areas with extreme variability, the bandwidth is considered small enough to maintain the fine scale characteristics of model. Conversely in homogenous areas, with the choice of large bandwidth, the maximum rate of upscaling will occur. The bandwidth upscaling algorithm is an iterative and hierarchical algorithm. The bandwidth method, unlike conventional scale-up methods, focuses on how to upgrid cells and, by determining the optimal averaging window, we will have the least loss information for the fine scale model. Upscaling is a pre-processing to building a simulator model with lower cell number, and thus, reducing volume and computational cost, while maintaining and retaining the basic information of the fine model. Due to the various variability of the reservoir features, the attribute upscaling pattern differs, and in order to show the variability of two features in the upscaling model simultaneously, it is suggested in this paper to upscale two features simultaneously. For simultaneous upscaling, we applied two different approaches; minimum and maximum bandwidth. Moreover, wavelet transformation is applied to upscaling the model. Then, as a result, the variance of the scale-up models based on wavelet is about one-third of the variance of the bandwidth method. Simulation results show that the bandwidth method is a good approach for upscaling the heterogeneous reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信