基于深度学习算法的软件故障预测

Q4 Computer Science
Osama Al Qasem, Mohammed Akour
{"title":"基于深度学习算法的软件故障预测","authors":"Osama Al Qasem, Mohammed Akour","doi":"10.4018/ijossp.2019100101","DOIUrl":null,"url":null,"abstract":"Software faults prediction (SFP) processes can be used for detecting faulty constructs at early stages of the development lifecycle, in addition to its being used in several phases of the development process. Machine learning (ML) is widely used in this area. One of the most promising subsets from ML is deep learning that achieves remarkable performance in various areas. Two deep learning algorithms are used in this paper, the Multi-layer perceptrons (MLPs) and Convolutional Neural Network (CNN). In order to evaluate the studied algorithms, four commonly used datasets from NASA are used i.e. (PC1, KC1, KC2 and CM1). The experiment results show how the CNN algorithm achieves prediction superiority of the MLP algorithm. The accuracy and detection rate measurements when using CNN has reached the standard ratio respectively as follows: PC1 97.7% - 73.9%, KC1 100% - 100%, KC2 99.3% - 99.2% and CM1 97.3% - 82.3%. This study provides promising results in using the deep learning for software fault prediction research.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"100 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Software Fault Prediction Using Deep Learning Algorithms\",\"authors\":\"Osama Al Qasem, Mohammed Akour\",\"doi\":\"10.4018/ijossp.2019100101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software faults prediction (SFP) processes can be used for detecting faulty constructs at early stages of the development lifecycle, in addition to its being used in several phases of the development process. Machine learning (ML) is widely used in this area. One of the most promising subsets from ML is deep learning that achieves remarkable performance in various areas. Two deep learning algorithms are used in this paper, the Multi-layer perceptrons (MLPs) and Convolutional Neural Network (CNN). In order to evaluate the studied algorithms, four commonly used datasets from NASA are used i.e. (PC1, KC1, KC2 and CM1). The experiment results show how the CNN algorithm achieves prediction superiority of the MLP algorithm. The accuracy and detection rate measurements when using CNN has reached the standard ratio respectively as follows: PC1 97.7% - 73.9%, KC1 100% - 100%, KC2 99.3% - 99.2% and CM1 97.3% - 82.3%. This study provides promising results in using the deep learning for software fault prediction research.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"100 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.2019100101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.2019100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 17

摘要

软件故障预测(SFP)过程可用于在开发生命周期的早期阶段检测有缺陷的结构,此外还可用于开发过程的几个阶段。机器学习(ML)被广泛应用于这一领域。机器学习中最有前途的子集之一是深度学习,它在各个领域都取得了卓越的表现。本文使用了两种深度学习算法,多层感知器(mlp)和卷积神经网络(CNN)。为了评估所研究的算法,使用了来自NASA的四个常用数据集(PC1, KC1, KC2和CM1)。实验结果表明,CNN算法达到了MLP算法的预测优势。使用CNN时测量的准确率和检出率分别达到标准比例:PC1 97.7% - 73.9%, KC1 100% - 100%, KC2 99.3% - 99.2%, CM1 97.3% - 82.3%。本研究为将深度学习应用于软件故障预测研究提供了有益的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software Fault Prediction Using Deep Learning Algorithms
Software faults prediction (SFP) processes can be used for detecting faulty constructs at early stages of the development lifecycle, in addition to its being used in several phases of the development process. Machine learning (ML) is widely used in this area. One of the most promising subsets from ML is deep learning that achieves remarkable performance in various areas. Two deep learning algorithms are used in this paper, the Multi-layer perceptrons (MLPs) and Convolutional Neural Network (CNN). In order to evaluate the studied algorithms, four commonly used datasets from NASA are used i.e. (PC1, KC1, KC2 and CM1). The experiment results show how the CNN algorithm achieves prediction superiority of the MLP algorithm. The accuracy and detection rate measurements when using CNN has reached the standard ratio respectively as follows: PC1 97.7% - 73.9%, KC1 100% - 100%, KC2 99.3% - 99.2% and CM1 97.3% - 82.3%. This study provides promising results in using the deep learning for software fault prediction research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信