Marwa Amri, Dina M R Mateus, Marwa Gatrouni, M. R. Rjeibi, N. Asses, C. Abbes
{"title":"磷酸盐岩和磷石膏共接种增磷微生物对黑麦草生长和养分吸收的影响","authors":"Marwa Amri, Dina M R Mateus, Marwa Gatrouni, M. R. Rjeibi, N. Asses, C. Abbes","doi":"10.3390/applbiosci1020012","DOIUrl":null,"url":null,"abstract":"In the previous half-century, natural rock phosphates (PN) have been a valuable alternative for phosphorus (P) fertilizer for sustainable agriculture; furthermore, phosphogypsum (PG) has been widely used as a soil amendment fertilizer since it improves some soil properties, increases crop yields, and represents an environmental concern that can make a good economic profit; this research aimed to study the effects of microbial consortia of phosphate-solubilizing microorganisms (PSM) on the solubilization of PN and PG in the soil, and their effects on promoting plant growth and nutrient assimilation using ryegrass as a plant model. Local supply of PG with Pseudomonas fluorescens (MW165744) significantly increases root proliferation and plant biomass dry weight compared to other isolates, as well as improves total P uptake, with a maximum value of 62.31 mg/pot. The opposite occurred in mixing inoculation with Pseudomonas fluorescens, Pantoea agglomerans (MW165752) and Stenotrophomonas maltophilia (MW221274), with a negligible total P assimilation of 5.39 mg/pot. Whereas the addition of Pseudomonas agglomerans with PG gave outstanding total P absorption of 57.05 mg/pot when compared with PN input of 38.06 mg/pot. Finally, the results prove that the co-inoculation of Pseudomonas fluorescens with PG could be a promising and alternative option to use it as a source of P fertilizer for plants and to maintain a high level of nutrients in the soil.","PeriodicalId":14998,"journal":{"name":"Journal of Applied Biosciences","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass\",\"authors\":\"Marwa Amri, Dina M R Mateus, Marwa Gatrouni, M. R. Rjeibi, N. Asses, C. Abbes\",\"doi\":\"10.3390/applbiosci1020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the previous half-century, natural rock phosphates (PN) have been a valuable alternative for phosphorus (P) fertilizer for sustainable agriculture; furthermore, phosphogypsum (PG) has been widely used as a soil amendment fertilizer since it improves some soil properties, increases crop yields, and represents an environmental concern that can make a good economic profit; this research aimed to study the effects of microbial consortia of phosphate-solubilizing microorganisms (PSM) on the solubilization of PN and PG in the soil, and their effects on promoting plant growth and nutrient assimilation using ryegrass as a plant model. Local supply of PG with Pseudomonas fluorescens (MW165744) significantly increases root proliferation and plant biomass dry weight compared to other isolates, as well as improves total P uptake, with a maximum value of 62.31 mg/pot. The opposite occurred in mixing inoculation with Pseudomonas fluorescens, Pantoea agglomerans (MW165752) and Stenotrophomonas maltophilia (MW221274), with a negligible total P assimilation of 5.39 mg/pot. Whereas the addition of Pseudomonas agglomerans with PG gave outstanding total P absorption of 57.05 mg/pot when compared with PN input of 38.06 mg/pot. Finally, the results prove that the co-inoculation of Pseudomonas fluorescens with PG could be a promising and alternative option to use it as a source of P fertilizer for plants and to maintain a high level of nutrients in the soil.\",\"PeriodicalId\":14998,\"journal\":{\"name\":\"Journal of Applied Biosciences\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/applbiosci1020012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applbiosci1020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-Inoculation with Phosphate-Solubilizing Microorganisms of Rock Phosphate and Phosphogypsum and Their Effect on Growth Promotion and Nutrient Uptake by Ryegrass
In the previous half-century, natural rock phosphates (PN) have been a valuable alternative for phosphorus (P) fertilizer for sustainable agriculture; furthermore, phosphogypsum (PG) has been widely used as a soil amendment fertilizer since it improves some soil properties, increases crop yields, and represents an environmental concern that can make a good economic profit; this research aimed to study the effects of microbial consortia of phosphate-solubilizing microorganisms (PSM) on the solubilization of PN and PG in the soil, and their effects on promoting plant growth and nutrient assimilation using ryegrass as a plant model. Local supply of PG with Pseudomonas fluorescens (MW165744) significantly increases root proliferation and plant biomass dry weight compared to other isolates, as well as improves total P uptake, with a maximum value of 62.31 mg/pot. The opposite occurred in mixing inoculation with Pseudomonas fluorescens, Pantoea agglomerans (MW165752) and Stenotrophomonas maltophilia (MW221274), with a negligible total P assimilation of 5.39 mg/pot. Whereas the addition of Pseudomonas agglomerans with PG gave outstanding total P absorption of 57.05 mg/pot when compared with PN input of 38.06 mg/pot. Finally, the results prove that the co-inoculation of Pseudomonas fluorescens with PG could be a promising and alternative option to use it as a source of P fertilizer for plants and to maintain a high level of nutrients in the soil.