引导人体光流和姿势

Aritro Roy Arko, K. M. Yi, J. Little
{"title":"引导人体光流和姿势","authors":"Aritro Roy Arko, K. M. Yi, J. Little","doi":"10.48550/arXiv.2210.15121","DOIUrl":null,"url":null,"abstract":"We propose a bootstrapping framework to enhance human optical flow and pose. We show that, for videos involving humans in scenes, we can improve both the optical flow and the pose estimation quality of humans by considering the two tasks at the same time. We enhance optical flow estimates by fine-tuning them to fit the human pose estimates and vice versa. In more detail, we optimize the pose and optical flow networks to, at inference time, agree with each other. We show that this results in state-of-the-art results on the Human 3.6M and 3D Poses in the Wild datasets, as well as a human-related subset of the Sintel dataset, both in terms of pose estimation accuracy and the optical flow accuracy at human joint locations. Code available at https://github.com/ubc-vision/bootstrapping-human-optical-flow-and-pose","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"2 1","pages":"139"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrapping Human Optical Flow and Pose\",\"authors\":\"Aritro Roy Arko, K. M. Yi, J. Little\",\"doi\":\"10.48550/arXiv.2210.15121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a bootstrapping framework to enhance human optical flow and pose. We show that, for videos involving humans in scenes, we can improve both the optical flow and the pose estimation quality of humans by considering the two tasks at the same time. We enhance optical flow estimates by fine-tuning them to fit the human pose estimates and vice versa. In more detail, we optimize the pose and optical flow networks to, at inference time, agree with each other. We show that this results in state-of-the-art results on the Human 3.6M and 3D Poses in the Wild datasets, as well as a human-related subset of the Sintel dataset, both in terms of pose estimation accuracy and the optical flow accuracy at human joint locations. Code available at https://github.com/ubc-vision/bootstrapping-human-optical-flow-and-pose\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"2 1\",\"pages\":\"139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.15121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.15121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个自举框架来增强人体光流和姿态。我们表明,对于场景中有人类的视频,我们可以通过同时考虑这两个任务来提高光流和人类的姿态估计质量。我们通过微调它们以适应人体姿势估计来增强光流估计,反之亦然。更详细地说,我们优化了位姿和光流网络,使其在推理时彼此一致。我们表明,在姿势估计精度和人体关节位置的光流精度方面,这在Wild数据集中的人类3.6M和3D姿势以及sinintel数据集中的人类相关子集上产生了最先进的结果。代码可在https://github.com/ubc-vision/bootstrapping-human-optical-flow-and-pose获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrapping Human Optical Flow and Pose
We propose a bootstrapping framework to enhance human optical flow and pose. We show that, for videos involving humans in scenes, we can improve both the optical flow and the pose estimation quality of humans by considering the two tasks at the same time. We enhance optical flow estimates by fine-tuning them to fit the human pose estimates and vice versa. In more detail, we optimize the pose and optical flow networks to, at inference time, agree with each other. We show that this results in state-of-the-art results on the Human 3.6M and 3D Poses in the Wild datasets, as well as a human-related subset of the Sintel dataset, both in terms of pose estimation accuracy and the optical flow accuracy at human joint locations. Code available at https://github.com/ubc-vision/bootstrapping-human-optical-flow-and-pose
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信