对数TAQ与对数THH的关系

IF 0.9 3区 数学 Q2 MATHEMATICS
T. Lundemo
{"title":"对数TAQ与对数THH的关系","authors":"T. Lundemo","doi":"10.4171/dm/839","DOIUrl":null,"url":null,"abstract":"We provide a new description of logarithmic topological Andre-Quillen homology in terms of the indecomposables of an augmented ring spectrum. The new description allows us to interpret logarithmic TAQ as an abstract cotangent complex, and leads to an etale descent formula for logarithmic topological Hochschild homology. The latter is analogous to results of Weibel-Geller for Hochschild homology of discrete rings, and of McCarthy-Minasian and Mathew for topological Hochschild homology. We also summarize and clarify analogous results relating notions of formal etaleness defined in terms of ordinary THH and TAQ.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"39 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the relationship between logarithmic TAQ and logarithmic THH\",\"authors\":\"T. Lundemo\",\"doi\":\"10.4171/dm/839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a new description of logarithmic topological Andre-Quillen homology in terms of the indecomposables of an augmented ring spectrum. The new description allows us to interpret logarithmic TAQ as an abstract cotangent complex, and leads to an etale descent formula for logarithmic topological Hochschild homology. The latter is analogous to results of Weibel-Geller for Hochschild homology of discrete rings, and of McCarthy-Minasian and Mathew for topological Hochschild homology. We also summarize and clarify analogous results relating notions of formal etaleness defined in terms of ordinary THH and TAQ.\",\"PeriodicalId\":50567,\"journal\":{\"name\":\"Documenta Mathematica\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documenta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/dm/839\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

从增广环谱不可分解的角度给出了对数拓扑Andre-Quillen同调的一种新描述。新的描述允许我们将对数TAQ解释为抽象的余切复,并导致对数拓扑Hochschild同调的一个线性下降公式。后者类似于Weibel-Geller关于离散环Hochschild同调的结果,以及McCarthy-Minasian和Mathew关于拓扑Hochschild同调的结果。我们还总结和澄清了用普通THH和TAQ定义的形式完备性概念的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the relationship between logarithmic TAQ and logarithmic THH
We provide a new description of logarithmic topological Andre-Quillen homology in terms of the indecomposables of an augmented ring spectrum. The new description allows us to interpret logarithmic TAQ as an abstract cotangent complex, and leads to an etale descent formula for logarithmic topological Hochschild homology. The latter is analogous to results of Weibel-Geller for Hochschild homology of discrete rings, and of McCarthy-Minasian and Mathew for topological Hochschild homology. We also summarize and clarify analogous results relating notions of formal etaleness defined in terms of ordinary THH and TAQ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Documenta Mathematica
Documenta Mathematica 数学-数学
CiteScore
1.60
自引率
11.10%
发文量
0
审稿时长
>12 weeks
期刊介绍: DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信