PPPS-2013:利用不均匀持续时间和延迟的尖峰序列在高能量密度等离子体中产生、检测和控制超快非线性光学过程

B. Afeyan, S. Huller, B. Albright
{"title":"PPPS-2013:利用不均匀持续时间和延迟的尖峰序列在高能量密度等离子体中产生、检测和控制超快非线性光学过程","authors":"B. Afeyan, S. Huller, B. Albright","doi":"10.1109/PLASMA.2013.6633487","DOIUrl":null,"url":null,"abstract":"Summary form only given. The success of Inertial Confinement Fusion (ICF) is to achieve controlled thermonuclear burn in the laboratory which will lead to the commercialization of clean, carbon-free and safe Inertial Fusion Energy (IFE). Both ICF and IFE demand a detailed understanding of the rapidly evolving high energy density plasmas (HEDP) as intense lasers create and nonlinearly modify them. We have developed and tested new design tools for novel ultrafast diagnostics that use nonlinear optical (NLO) techniques to ferret out the complex, nonlinear, kinetic, microscopic dynamics of HEDP. Measuring the slope of the velocity distribution function of a plasma electron or ion species in a velocity sector of interest is one such paramount goal. We accomplish this by (i) adopting the appropriate method of generating a pump laser composed of spike trains of uneven duration and delay (STUD pulses)1, 2, (ii) adopting the appropriate method of detecting and diagnosing the amplified transmission of a stimulated Raman or stimulated Brillouin scattered (SRS or SBS) probe beam, and (iii) utilizing the gain variations of the scattered signal to develop a detailed map of background plasma instabilities. This GeDeCo code is being tested using output from state of the art kinetic simulations3 to emulate the microscopic state of an HED plasma. High-repetition-rate, high-average-power future drivers of IFE will use STUD pulses in order to control undesirable instabilities adaptively.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPPS-2013: Generation, detection and control of ultrafast nonlinear optical processes in high energy density plasmas using spike trains of uneven duration and delay\",\"authors\":\"B. Afeyan, S. Huller, B. Albright\",\"doi\":\"10.1109/PLASMA.2013.6633487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The success of Inertial Confinement Fusion (ICF) is to achieve controlled thermonuclear burn in the laboratory which will lead to the commercialization of clean, carbon-free and safe Inertial Fusion Energy (IFE). Both ICF and IFE demand a detailed understanding of the rapidly evolving high energy density plasmas (HEDP) as intense lasers create and nonlinearly modify them. We have developed and tested new design tools for novel ultrafast diagnostics that use nonlinear optical (NLO) techniques to ferret out the complex, nonlinear, kinetic, microscopic dynamics of HEDP. Measuring the slope of the velocity distribution function of a plasma electron or ion species in a velocity sector of interest is one such paramount goal. We accomplish this by (i) adopting the appropriate method of generating a pump laser composed of spike trains of uneven duration and delay (STUD pulses)1, 2, (ii) adopting the appropriate method of detecting and diagnosing the amplified transmission of a stimulated Raman or stimulated Brillouin scattered (SRS or SBS) probe beam, and (iii) utilizing the gain variations of the scattered signal to develop a detailed map of background plasma instabilities. This GeDeCo code is being tested using output from state of the art kinetic simulations3 to emulate the microscopic state of an HED plasma. High-repetition-rate, high-average-power future drivers of IFE will use STUD pulses in order to control undesirable instabilities adaptively.\",\"PeriodicalId\":6313,\"journal\":{\"name\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2013.6633487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6633487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。惯性约束聚变(ICF)的成功在于在实验室中实现了受控的热核燃烧,这将导致清洁、无碳和安全的惯性聚变能源(IFE)的商业化。ICF和IFE都需要详细了解快速发展的高能密度等离子体(HEDP),因为强激光产生和非线性修改它们。我们已经开发并测试了新的设计工具,用于使用非线性光学(NLO)技术的新型超快速诊断,以找出HEDP的复杂,非线性,动力学和微观动力学。测量一个感兴趣的速度扇区中等离子体电子或离子种类的速度分布函数的斜率就是这样一个最重要的目标。我们通过(i)采用适当的方法产生由不均匀持续时间和延迟的尖峰串(STUD脉冲)组成的泵浦激光器1,2,(ii)采用适当的方法检测和诊断受激拉曼或受激布里渊散射(SRS或SBS)探测光束的放大传输,以及(iii)利用散射信号的增益变化来开发背景等离子体不稳定性的详细图。这个GeDeCo代码正在使用最先进的动力学模拟输出来模拟HED等离子体的微观状态。高重复率、高平均功率的未来IFE驱动器将使用STUD脉冲,以自适应地控制不期望的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PPPS-2013: Generation, detection and control of ultrafast nonlinear optical processes in high energy density plasmas using spike trains of uneven duration and delay
Summary form only given. The success of Inertial Confinement Fusion (ICF) is to achieve controlled thermonuclear burn in the laboratory which will lead to the commercialization of clean, carbon-free and safe Inertial Fusion Energy (IFE). Both ICF and IFE demand a detailed understanding of the rapidly evolving high energy density plasmas (HEDP) as intense lasers create and nonlinearly modify them. We have developed and tested new design tools for novel ultrafast diagnostics that use nonlinear optical (NLO) techniques to ferret out the complex, nonlinear, kinetic, microscopic dynamics of HEDP. Measuring the slope of the velocity distribution function of a plasma electron or ion species in a velocity sector of interest is one such paramount goal. We accomplish this by (i) adopting the appropriate method of generating a pump laser composed of spike trains of uneven duration and delay (STUD pulses)1, 2, (ii) adopting the appropriate method of detecting and diagnosing the amplified transmission of a stimulated Raman or stimulated Brillouin scattered (SRS or SBS) probe beam, and (iii) utilizing the gain variations of the scattered signal to develop a detailed map of background plasma instabilities. This GeDeCo code is being tested using output from state of the art kinetic simulations3 to emulate the microscopic state of an HED plasma. High-repetition-rate, high-average-power future drivers of IFE will use STUD pulses in order to control undesirable instabilities adaptively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信