Dawood Al Mahrouqi, R. Farajzadeh, A. Alkindi, M. Rifaat
{"title":"阿曼苏丹国化学提高采收率综合分析与预测方法","authors":"Dawood Al Mahrouqi, R. Farajzadeh, A. Alkindi, M. Rifaat","doi":"10.2118/197840-ms","DOIUrl":null,"url":null,"abstract":"\n Polymer injection in the south of Sultanate of Oman has been implemented in Marmul field for the last decade. Recently, alkaline surfactant polymer (ASP) technology has also been piloted in the field, which was technically successful owing to its significant incremental oil production. The current end-game strategy for the field is to follow polymer with ASP flood in order to produce the remaining oil after polymer flood and maximize the ultimate oil recovery factor. This has revealed the need for evaluation of the full-field performance of ASP flood using available tools. Full-field dynamic models are not always best tools for modeling the performance of chemical enhanced oil recovery, primarily due to under-representation of the reservoir heterogeneity, lack of the complementary data, complexity of the process itself, and large computation time. In this paper, we implement a conduit-model approach using field production data from the ASP pilot to assess the ultimate incremental oil recovery. This approach is compared to an analytical model that is based on the modified Koval's method with reservoir heterogeneity as an input parameter. The obtained results are used for preliminary assessment of the difference between polymer and ASP injection in the full field.","PeriodicalId":11091,"journal":{"name":"Day 3 Wed, November 13, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integrated Approach for Analysis and Forecasting of Chemical EOR Recoveries in Sultanate of Oman\",\"authors\":\"Dawood Al Mahrouqi, R. Farajzadeh, A. Alkindi, M. Rifaat\",\"doi\":\"10.2118/197840-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Polymer injection in the south of Sultanate of Oman has been implemented in Marmul field for the last decade. Recently, alkaline surfactant polymer (ASP) technology has also been piloted in the field, which was technically successful owing to its significant incremental oil production. The current end-game strategy for the field is to follow polymer with ASP flood in order to produce the remaining oil after polymer flood and maximize the ultimate oil recovery factor. This has revealed the need for evaluation of the full-field performance of ASP flood using available tools. Full-field dynamic models are not always best tools for modeling the performance of chemical enhanced oil recovery, primarily due to under-representation of the reservoir heterogeneity, lack of the complementary data, complexity of the process itself, and large computation time. In this paper, we implement a conduit-model approach using field production data from the ASP pilot to assess the ultimate incremental oil recovery. This approach is compared to an analytical model that is based on the modified Koval's method with reservoir heterogeneity as an input parameter. The obtained results are used for preliminary assessment of the difference between polymer and ASP injection in the full field.\",\"PeriodicalId\":11091,\"journal\":{\"name\":\"Day 3 Wed, November 13, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 13, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197840-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 13, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197840-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated Approach for Analysis and Forecasting of Chemical EOR Recoveries in Sultanate of Oman
Polymer injection in the south of Sultanate of Oman has been implemented in Marmul field for the last decade. Recently, alkaline surfactant polymer (ASP) technology has also been piloted in the field, which was technically successful owing to its significant incremental oil production. The current end-game strategy for the field is to follow polymer with ASP flood in order to produce the remaining oil after polymer flood and maximize the ultimate oil recovery factor. This has revealed the need for evaluation of the full-field performance of ASP flood using available tools. Full-field dynamic models are not always best tools for modeling the performance of chemical enhanced oil recovery, primarily due to under-representation of the reservoir heterogeneity, lack of the complementary data, complexity of the process itself, and large computation time. In this paper, we implement a conduit-model approach using field production data from the ASP pilot to assess the ultimate incremental oil recovery. This approach is compared to an analytical model that is based on the modified Koval's method with reservoir heterogeneity as an input parameter. The obtained results are used for preliminary assessment of the difference between polymer and ASP injection in the full field.