Mingjian Cui, Jie Zhang, Hongyu Wu, B. Hodge, D. Ke, Yuanzhan Sun
{"title":"增加电力系统灵活性的风力发电斜坡产品","authors":"Mingjian Cui, Jie Zhang, Hongyu Wu, B. Hodge, D. Ke, Yuanzhan Sun","doi":"10.1109/TDC.2016.7520002","DOIUrl":null,"url":null,"abstract":"With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus System show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Wind power ramping product for increasing power system flexibility\",\"authors\":\"Mingjian Cui, Jie Zhang, Hongyu Wu, B. Hodge, D. Ke, Yuanzhan Sun\",\"doi\":\"10.1109/TDC.2016.7520002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus System show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.\",\"PeriodicalId\":6497,\"journal\":{\"name\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"14 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2016.7520002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7520002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wind power ramping product for increasing power system flexibility
With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus System show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.