{"title":"标记马尔可夫链的总变异距离","authors":"Taolue Chen, S. Kiefer","doi":"10.1145/2603088.2603099","DOIUrl":null,"url":null,"abstract":"Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the \"inequivalence\" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"On the total variation distance of labelled Markov chains\",\"authors\":\"Taolue Chen, S. Kiefer\",\"doi\":\"10.1145/2603088.2603099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the \\\"inequivalence\\\" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the total variation distance of labelled Markov chains
Labelled Markov chains (LMCs) are widely used in probabilistic verification, speech recognition, computational biology, and many other fields. Checking two LMCs for equivalence is a classical problem subject to extensive studies, while the total variation distance provides a natural measure for the "inequivalence" of two LMCs: it is the maximum difference between probabilities that the LMCs assign to the same event. In this paper we develop a theory of the total variation distance between two LMCs, with emphasis on the algorithmic aspects: (1) we provide a polynomial-time algorithm for determining whether two LMCs have distance 1, i.e., whether they can almost always be distinguished; (2) we provide an algorithm for approximating the distance with arbitrary precision; and (3) we show that the threshold problem, i.e., whether the distance exceeds a given threshold, is NP-hard and hard for the square-root-sum problem. We also make a connection between the total variation distance and Bernoulli convolutions.