James W. E. Dickey, J. Jeschke, G. Steffen, E. Kazanavičiūtė, R. Brennan, Elizabeta Briski
{"title":"Current温度限制了通常交易的掠食性腹足动物的潜在影响","authors":"James W. E. Dickey, J. Jeschke, G. Steffen, E. Kazanavičiūtė, R. Brennan, Elizabeta Briski","doi":"10.3391/ai.2023.18.2.103208","DOIUrl":null,"url":null,"abstract":"The pet trade has facilitated the spread of invasive alien species (IAS) globally, with negative consequences for biodiversity. The prediction of impacts is a major goal for invasion ecologists, and is especially crucial in an industry often lacking knowledge about traded species. We focused on the predatory gastropod Anentome helena, a species originating in south-east Asia and traded around the world, but with taxonomic uncertainty. We first set out to determine where our study organism fell within the A. “helena” species complex, known to comprise at least four cryptic species, before assessing the effect of temperature on the number of prey, the pulmonate snail Physella acuta, killed per predator via functional response experiments at two temperatures. We used 22 °C as a recommended temperature for housing the species in captivity, and 18 °C as a representative summer lake temperature in temperate climates of Europe. We also assessed the role of predator group size (1×, 2×, 3×) on predation (total consumption and average per capita consumption) at the experimental temperatures with fixed densities of prey, as well as the effect of these temperatures on prey activity. Our organisms belonged to a cryptic species originating from Thailand (Anentome sp. A), matching the findings of aquarium trade samples in other continents. In the functional response experiments, we found maximum feeding rate to be significantly reduced at the lower temperature. A similar result ensued from group feeding, with total consumption significantly reduced and the reduction in average per capita consumption approaching significance at the lower temperature. There was no significant effect of group size on the average per capita consumption in the group trial, indicating neutral conspecific interactions. No significant effect of temperature on the activity of the prey species was found, suggesting decreased consumption was mainly driven by predator, rather than prey. These results suggest limited A. helena impacts in the short-term, but increasing temperatures with climate change may facilitate greater consequences from releases. We suggest future studies assess other potential predatory impacts and survival across relevant abiotic conditions, and encourage the use of similar methods to assess the impacts of other commonly traded species.","PeriodicalId":8119,"journal":{"name":"Aquatic Invasions","volume":"6 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Current temperatures limit the potential impact of a commonly traded predatory gastropod\",\"authors\":\"James W. E. Dickey, J. Jeschke, G. Steffen, E. Kazanavičiūtė, R. Brennan, Elizabeta Briski\",\"doi\":\"10.3391/ai.2023.18.2.103208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pet trade has facilitated the spread of invasive alien species (IAS) globally, with negative consequences for biodiversity. The prediction of impacts is a major goal for invasion ecologists, and is especially crucial in an industry often lacking knowledge about traded species. We focused on the predatory gastropod Anentome helena, a species originating in south-east Asia and traded around the world, but with taxonomic uncertainty. We first set out to determine where our study organism fell within the A. “helena” species complex, known to comprise at least four cryptic species, before assessing the effect of temperature on the number of prey, the pulmonate snail Physella acuta, killed per predator via functional response experiments at two temperatures. We used 22 °C as a recommended temperature for housing the species in captivity, and 18 °C as a representative summer lake temperature in temperate climates of Europe. We also assessed the role of predator group size (1×, 2×, 3×) on predation (total consumption and average per capita consumption) at the experimental temperatures with fixed densities of prey, as well as the effect of these temperatures on prey activity. Our organisms belonged to a cryptic species originating from Thailand (Anentome sp. A), matching the findings of aquarium trade samples in other continents. In the functional response experiments, we found maximum feeding rate to be significantly reduced at the lower temperature. A similar result ensued from group feeding, with total consumption significantly reduced and the reduction in average per capita consumption approaching significance at the lower temperature. There was no significant effect of group size on the average per capita consumption in the group trial, indicating neutral conspecific interactions. No significant effect of temperature on the activity of the prey species was found, suggesting decreased consumption was mainly driven by predator, rather than prey. These results suggest limited A. helena impacts in the short-term, but increasing temperatures with climate change may facilitate greater consequences from releases. We suggest future studies assess other potential predatory impacts and survival across relevant abiotic conditions, and encourage the use of similar methods to assess the impacts of other commonly traded species.\",\"PeriodicalId\":8119,\"journal\":{\"name\":\"Aquatic Invasions\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Invasions\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3391/ai.2023.18.2.103208\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3391/ai.2023.18.2.103208","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Current temperatures limit the potential impact of a commonly traded predatory gastropod
The pet trade has facilitated the spread of invasive alien species (IAS) globally, with negative consequences for biodiversity. The prediction of impacts is a major goal for invasion ecologists, and is especially crucial in an industry often lacking knowledge about traded species. We focused on the predatory gastropod Anentome helena, a species originating in south-east Asia and traded around the world, but with taxonomic uncertainty. We first set out to determine where our study organism fell within the A. “helena” species complex, known to comprise at least four cryptic species, before assessing the effect of temperature on the number of prey, the pulmonate snail Physella acuta, killed per predator via functional response experiments at two temperatures. We used 22 °C as a recommended temperature for housing the species in captivity, and 18 °C as a representative summer lake temperature in temperate climates of Europe. We also assessed the role of predator group size (1×, 2×, 3×) on predation (total consumption and average per capita consumption) at the experimental temperatures with fixed densities of prey, as well as the effect of these temperatures on prey activity. Our organisms belonged to a cryptic species originating from Thailand (Anentome sp. A), matching the findings of aquarium trade samples in other continents. In the functional response experiments, we found maximum feeding rate to be significantly reduced at the lower temperature. A similar result ensued from group feeding, with total consumption significantly reduced and the reduction in average per capita consumption approaching significance at the lower temperature. There was no significant effect of group size on the average per capita consumption in the group trial, indicating neutral conspecific interactions. No significant effect of temperature on the activity of the prey species was found, suggesting decreased consumption was mainly driven by predator, rather than prey. These results suggest limited A. helena impacts in the short-term, but increasing temperatures with climate change may facilitate greater consequences from releases. We suggest future studies assess other potential predatory impacts and survival across relevant abiotic conditions, and encourage the use of similar methods to assess the impacts of other commonly traded species.
期刊介绍:
Aquatic Invasions is an open access, peer-reviewed international journal focusing on academic research of biological invasions in both inland and coastal water ecosystems from around the world.
It was established in 2006 as initiative of the International Society of Limnology (SIL) Working Group on Aquatic Invasive Species (WGAIS) with start-up funding from the European Commission Sixth Framework Programme for Research and Technological Development Integrated Project ALARM.
Aquatic Invasions is an official journal of International Association for Open Knowledge on Invasive Alien Species (INVASIVESNET).
Aquatic Invasions provides a forum for professionals involved in research of aquatic non-native species, including a focus on the following:
• Patterns of non-native species dispersal, including range extensions with global change
• Trends in new introductions and establishment of non-native species
• Population dynamics of non-native species
• Ecological and evolutionary impacts of non-native species
• Behaviour of invasive and associated native species in invaded areas
• Prediction of new invasions
• Advances in non-native species identification and taxonomy