{"title":"含水层特征:以哈瓦萨市含水层为例","authors":"Shemsu Gulta, B. Abate","doi":"10.5772/intechopen.91211","DOIUrl":null,"url":null,"abstract":"Hydrogeologists and other water experts agree on that the effective groundwater management requires: firstly, a good understanding of the aquifer system; secondly, identification of practical measures to control abstraction; and thirdly, improvement in groundwater resource through artificial recharge. A 16 years’ pumping test and drilling lithology data and productive 29 wells were used to characterize the aquifer parameters of the Hawassa City, Ethiopia. The aquifer system was characterized physically, potentially, spatially, quantitatively, and qualitatively using AquiferTest software by applying Moench method to pumping test response data considering the basic assumptions in the model. Weathered and fractured pumice, basalt Scoriaceous rocks, fine-to-coarse-grained sand, and weathered ignimbrites are major water-bearing formations found from the analysis. High porosity and permeability due to these fractures are found to be a risk for the easy contamination of the ground water from surface wastes especially at the shallow aquifer water areas. Spatially, the southern corner and the lake shore of the city were identified as a huge potential area. Percentage of recovery results are 95–100% and transmissivity varies from 4.77 × 10−4 m2/s to 1.75 × 101 m2/s. This follows the general pattern of increasing value from east to west, that is, the value increases from the upper part of the basin to the lower. Moreover, the annual ground flow vector map of the area was developed using static water level data to see the direction of subsurface flow in the area. Accordingly, a large magnitude of water flowing from the central and west directions to the lake shore is identified showing similar profile with the surface flow.","PeriodicalId":51870,"journal":{"name":"Australasian Journal of Water Resources","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aquifer Characterization: The Case of Hawassa City Aquifer\",\"authors\":\"Shemsu Gulta, B. Abate\",\"doi\":\"10.5772/intechopen.91211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogeologists and other water experts agree on that the effective groundwater management requires: firstly, a good understanding of the aquifer system; secondly, identification of practical measures to control abstraction; and thirdly, improvement in groundwater resource through artificial recharge. A 16 years’ pumping test and drilling lithology data and productive 29 wells were used to characterize the aquifer parameters of the Hawassa City, Ethiopia. The aquifer system was characterized physically, potentially, spatially, quantitatively, and qualitatively using AquiferTest software by applying Moench method to pumping test response data considering the basic assumptions in the model. Weathered and fractured pumice, basalt Scoriaceous rocks, fine-to-coarse-grained sand, and weathered ignimbrites are major water-bearing formations found from the analysis. High porosity and permeability due to these fractures are found to be a risk for the easy contamination of the ground water from surface wastes especially at the shallow aquifer water areas. Spatially, the southern corner and the lake shore of the city were identified as a huge potential area. Percentage of recovery results are 95–100% and transmissivity varies from 4.77 × 10−4 m2/s to 1.75 × 101 m2/s. This follows the general pattern of increasing value from east to west, that is, the value increases from the upper part of the basin to the lower. Moreover, the annual ground flow vector map of the area was developed using static water level data to see the direction of subsurface flow in the area. Accordingly, a large magnitude of water flowing from the central and west directions to the lake shore is identified showing similar profile with the surface flow.\",\"PeriodicalId\":51870,\"journal\":{\"name\":\"Australasian Journal of Water Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Journal of Water Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.91211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Journal of Water Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Aquifer Characterization: The Case of Hawassa City Aquifer
Hydrogeologists and other water experts agree on that the effective groundwater management requires: firstly, a good understanding of the aquifer system; secondly, identification of practical measures to control abstraction; and thirdly, improvement in groundwater resource through artificial recharge. A 16 years’ pumping test and drilling lithology data and productive 29 wells were used to characterize the aquifer parameters of the Hawassa City, Ethiopia. The aquifer system was characterized physically, potentially, spatially, quantitatively, and qualitatively using AquiferTest software by applying Moench method to pumping test response data considering the basic assumptions in the model. Weathered and fractured pumice, basalt Scoriaceous rocks, fine-to-coarse-grained sand, and weathered ignimbrites are major water-bearing formations found from the analysis. High porosity and permeability due to these fractures are found to be a risk for the easy contamination of the ground water from surface wastes especially at the shallow aquifer water areas. Spatially, the southern corner and the lake shore of the city were identified as a huge potential area. Percentage of recovery results are 95–100% and transmissivity varies from 4.77 × 10−4 m2/s to 1.75 × 101 m2/s. This follows the general pattern of increasing value from east to west, that is, the value increases from the upper part of the basin to the lower. Moreover, the annual ground flow vector map of the area was developed using static water level data to see the direction of subsurface flow in the area. Accordingly, a large magnitude of water flowing from the central and west directions to the lake shore is identified showing similar profile with the surface flow.
期刊介绍:
The Australasian Journal of Water Resources ( AJWR) is a multi-disciplinary regional journal dedicated to scholarship, professional practice and discussion on water resources planning, management and policy. Its primary geographic focus is on Australia, New Zealand and the Pacific Islands. Papers from outside this region will also be welcomed if they contribute to an understanding of water resources issues in the region. Such contributions could be due to innovations applicable to the Australasian water community, or where clear linkages between studies in other parts of the world are linked to important issues or water planning, management, development and policy challenges in Australasia. These could include papers on global issues where Australasian impacts are clearly identified.