分层强化学习的自动复合动作发现

Josiah Laivins, Minwoo Lee
{"title":"分层强化学习的自动复合动作发现","authors":"Josiah Laivins, Minwoo Lee","doi":"10.1109/SSCI44817.2019.9003053","DOIUrl":null,"url":null,"abstract":"Even with recent advances in standard reinforcement learning, hierarchical reinforcement learning has been discussed as a promising approach to solve complex problems. From human-designed abstraction, planning or learning with composite actions are well-understood, but without human intervention, producing abstract (or composite) actions automatically is one of the remaining challenges. We separate this action discovery from reinforcement learning problem and investigate on searching impactful composite actions that can make meaningful changes in state space. We discuss the efficiency and flexibility of the suggested model by interpreting and analyzing the discovered composite actions with different deep reinforcement learning algorithms in different environments.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"56 1","pages":"198-205"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Composite Action Discovery for Hierarchical Reinforcement Learning\",\"authors\":\"Josiah Laivins, Minwoo Lee\",\"doi\":\"10.1109/SSCI44817.2019.9003053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even with recent advances in standard reinforcement learning, hierarchical reinforcement learning has been discussed as a promising approach to solve complex problems. From human-designed abstraction, planning or learning with composite actions are well-understood, but without human intervention, producing abstract (or composite) actions automatically is one of the remaining challenges. We separate this action discovery from reinforcement learning problem and investigate on searching impactful composite actions that can make meaningful changes in state space. We discuss the efficiency and flexibility of the suggested model by interpreting and analyzing the discovered composite actions with different deep reinforcement learning algorithms in different environments.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"56 1\",\"pages\":\"198-205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9003053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

即使最近在标准强化学习方面取得了进展,分层强化学习也被认为是解决复杂问题的一种有前途的方法。从人为设计的抽象中,可以很好地理解使用组合动作进行计划或学习,但是如果没有人为干预,自动生成抽象(或组合)动作是仍然存在的挑战之一。我们将这个动作发现从强化学习问题中分离出来,并研究如何搜索能够在状态空间中产生有意义变化的有影响力的复合动作。我们通过解释和分析在不同环境中使用不同深度强化学习算法发现的复合动作来讨论所建议模型的效率和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Composite Action Discovery for Hierarchical Reinforcement Learning
Even with recent advances in standard reinforcement learning, hierarchical reinforcement learning has been discussed as a promising approach to solve complex problems. From human-designed abstraction, planning or learning with composite actions are well-understood, but without human intervention, producing abstract (or composite) actions automatically is one of the remaining challenges. We separate this action discovery from reinforcement learning problem and investigate on searching impactful composite actions that can make meaningful changes in state space. We discuss the efficiency and flexibility of the suggested model by interpreting and analyzing the discovered composite actions with different deep reinforcement learning algorithms in different environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信