{"title":"仿射设计的扩展和共扩展关联图的距离签名","authors":"Xu Yang, Xiaomin Zhu, Jing Chen","doi":"10.1142/s1005386723000287","DOIUrl":null,"url":null,"abstract":"The distance matrix of a connected graph [Formula: see text], denoted by [Formula: see text], is the matrix whose rows and columns are indexed by the vertex set [Formula: see text] such that the [Formula: see text]-entry is [Formula: see text], where [Formula: see text], [Formula: see text]. The distance signature [Formula: see text] of [Formula: see text] is the inertia of [Formula: see text]. In this paper, we determine the distance signature of the extended (co-extended) incidence graph of an affine design. Furthermore, we state that an open Graffiti conjecture is true for the extended (co-extended) incidence graphs of affine designs by investigating the lower bound of the matching number.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance Signatures of Extended and Co-extended Incidence Graphs of Affine Designs\",\"authors\":\"Xu Yang, Xiaomin Zhu, Jing Chen\",\"doi\":\"10.1142/s1005386723000287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distance matrix of a connected graph [Formula: see text], denoted by [Formula: see text], is the matrix whose rows and columns are indexed by the vertex set [Formula: see text] such that the [Formula: see text]-entry is [Formula: see text], where [Formula: see text], [Formula: see text]. The distance signature [Formula: see text] of [Formula: see text] is the inertia of [Formula: see text]. In this paper, we determine the distance signature of the extended (co-extended) incidence graph of an affine design. Furthermore, we state that an open Graffiti conjecture is true for the extended (co-extended) incidence graphs of affine designs by investigating the lower bound of the matching number.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386723000287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386723000287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
连通图[公式:见文]的距离矩阵,用[公式:见文]表示,是一个矩阵,它的行和列由顶点集[公式:见文]索引,使得[公式:见文]条目为[公式:见文],其中[公式:见文],[公式:见文]。[Formula: see text]的距离签名[Formula: see text]是[Formula: see text]的惯性。本文确定了仿射设计的扩展(共扩展)关联图的距离特征。此外,我们通过研究匹配数的下界,证明了对仿射设计的扩展(共扩展)关联图的开放涂鸦猜想是成立的。
Distance Signatures of Extended and Co-extended Incidence Graphs of Affine Designs
The distance matrix of a connected graph [Formula: see text], denoted by [Formula: see text], is the matrix whose rows and columns are indexed by the vertex set [Formula: see text] such that the [Formula: see text]-entry is [Formula: see text], where [Formula: see text], [Formula: see text]. The distance signature [Formula: see text] of [Formula: see text] is the inertia of [Formula: see text]. In this paper, we determine the distance signature of the extended (co-extended) incidence graph of an affine design. Furthermore, we state that an open Graffiti conjecture is true for the extended (co-extended) incidence graphs of affine designs by investigating the lower bound of the matching number.