关于投影不变半单模

Yeliz Kara
{"title":"关于投影不变半单模","authors":"Yeliz Kara","doi":"10.29350/JOPS.2021.26.1.1210","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and investigate the notion of projection invariant semisimple modules. Some structural properties of aforementioned class of modules are studied. We obtain indecomposable decompositions of former class of modules under some module theoretical conditions. Moreover, we explore when the finite exchange property implies full exchange property for the class of projection invariant semisimple modules. Finally, we obtain that the endomorphism ring of a projection invariant semisimple modules is a π- Baer ring.","PeriodicalId":7856,"journal":{"name":"Al-Qadisiyah Journal Of Pure Science","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Projection Invariant Semisimple Modules\",\"authors\":\"Yeliz Kara\",\"doi\":\"10.29350/JOPS.2021.26.1.1210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and investigate the notion of projection invariant semisimple modules. Some structural properties of aforementioned class of modules are studied. We obtain indecomposable decompositions of former class of modules under some module theoretical conditions. Moreover, we explore when the finite exchange property implies full exchange property for the class of projection invariant semisimple modules. Finally, we obtain that the endomorphism ring of a projection invariant semisimple modules is a π- Baer ring.\",\"PeriodicalId\":7856,\"journal\":{\"name\":\"Al-Qadisiyah Journal Of Pure Science\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Qadisiyah Journal Of Pure Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29350/JOPS.2021.26.1.1210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Qadisiyah Journal Of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29350/JOPS.2021.26.1.1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入并研究了投影不变半单模的概念。研究了这类模块的一些结构特性。在一定的模块理论条件下,得到了前一类模块的不可分解分解。此外,我们还探讨了投影不变半单模类的有限交换性质何时意味着完全交换性质。最后,我们得到了投影不变半单模的自同态环是一个π- Baer环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Projection Invariant Semisimple Modules
In this paper, we introduce and investigate the notion of projection invariant semisimple modules. Some structural properties of aforementioned class of modules are studied. We obtain indecomposable decompositions of former class of modules under some module theoretical conditions. Moreover, we explore when the finite exchange property implies full exchange property for the class of projection invariant semisimple modules. Finally, we obtain that the endomorphism ring of a projection invariant semisimple modules is a π- Baer ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信