(Lr,Ls) 1 r−1 s = 2 n线外球面的解析估计

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianyi Ren
{"title":"(Lr,Ls) 1 r−1 s = 2 n线外球面的解析估计","authors":"Tianyi Ren","doi":"10.1142/S1664360719500036","DOIUrl":null,"url":null,"abstract":"We extend the resolvent estimate on the sphere to exponents off the line [Formula: see text]. Since the condition [Formula: see text] on the exponents is necessary for a uniform bound, one cannot expect estimates off this line to be uniform still. The essential ingredient in our proof is an [Formula: see text] norm estimate on the operator [Formula: see text] that projects onto the space of spherical harmonics of degree [Formula: see text]. In showing this estimate, we apply an interpolation technique first introduced by Bourgain [J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301(10) (1985) 499–502.]. The rest of our proof parallels that in Huang–Sogge [S. Huang and C. D. Sogge, Concerning [Formula: see text] resolvent estimates for simply connected manifolds of constant curvature, J. Funct. Anal. 267(12) (2014) 4635–4666].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"(Lr,Ls) Resolvent estimate for the sphere off the line 1 r −1 s = 2 n\",\"authors\":\"Tianyi Ren\",\"doi\":\"10.1142/S1664360719500036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the resolvent estimate on the sphere to exponents off the line [Formula: see text]. Since the condition [Formula: see text] on the exponents is necessary for a uniform bound, one cannot expect estimates off this line to be uniform still. The essential ingredient in our proof is an [Formula: see text] norm estimate on the operator [Formula: see text] that projects onto the space of spherical harmonics of degree [Formula: see text]. In showing this estimate, we apply an interpolation technique first introduced by Bourgain [J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301(10) (1985) 499–502.]. The rest of our proof parallels that in Huang–Sogge [S. Huang and C. D. Sogge, Concerning [Formula: see text] resolvent estimates for simply connected manifolds of constant curvature, J. Funct. Anal. 267(12) (2014) 4635–4666].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S1664360719500036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1664360719500036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们将球面上的解析估计扩展到线外指数[公式:见文本]。由于指数上的条件[公式:见文本]是一致界的必要条件,因此不能期望这条线上的估计仍然是一致的。我们证明的基本要素是一个[公式:见文]对算子[公式:见文]的范数估计,它投射到次次的球面谐波空间[公式:见文]。为了显示这个估计,我们采用了布尔甘(Bourgain)首先引入的插值技术[J]。布尔甘,函数极值的估计,中国科学院学报。巴黎爵士。[j].数学。301(10)(1985)499-502。我们其余的证明与Huang-Sogge [S。黄和c.d. Sogge,关于常曲率单连通流形的解析估计[公式:见文本],J. Funct。[j].中国科学院学报。267(12)(2014)4635-4666。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(Lr,Ls) Resolvent estimate for the sphere off the line 1 r −1 s = 2 n
We extend the resolvent estimate on the sphere to exponents off the line [Formula: see text]. Since the condition [Formula: see text] on the exponents is necessary for a uniform bound, one cannot expect estimates off this line to be uniform still. The essential ingredient in our proof is an [Formula: see text] norm estimate on the operator [Formula: see text] that projects onto the space of spherical harmonics of degree [Formula: see text]. In showing this estimate, we apply an interpolation technique first introduced by Bourgain [J. Bourgain, Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math. 301(10) (1985) 499–502.]. The rest of our proof parallels that in Huang–Sogge [S. Huang and C. D. Sogge, Concerning [Formula: see text] resolvent estimates for simply connected manifolds of constant curvature, J. Funct. Anal. 267(12) (2014) 4635–4666].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信