高秩算术格的渐近生成数

IF 0.8 3区 数学 Q2 MATHEMATICS
A. Lubotzky, Raz Slutsky
{"title":"高秩算术格的渐近生成数","authors":"A. Lubotzky, Raz Slutsky","doi":"10.1307/mmj/20217204","DOIUrl":null,"url":null,"abstract":"Abert, Gelander and Nikolov [AGN17] conjectured that the number of generators d(Γ) of a lattice Γ in a high rank simple Lie group H grows sub-linearly with v = μ(H/Γ), the co-volume of Γ in H. We prove this for non-uniform lattices in a very strong form, showing that for 2−generic such H’s, d(Γ) = OH(log v/ log log v), which is essentially optimal. While we can not prove a new upper bound for uniform lattices, we will show that for such lattices one can not expect to achieve a better bound than d(Γ) = O(log v).","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"74 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Asymptotic Number of Generators of High Rank Arithmetic Lattices\",\"authors\":\"A. Lubotzky, Raz Slutsky\",\"doi\":\"10.1307/mmj/20217204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abert, Gelander and Nikolov [AGN17] conjectured that the number of generators d(Γ) of a lattice Γ in a high rank simple Lie group H grows sub-linearly with v = μ(H/Γ), the co-volume of Γ in H. We prove this for non-uniform lattices in a very strong form, showing that for 2−generic such H’s, d(Γ) = OH(log v/ log log v), which is essentially optimal. While we can not prove a new upper bound for uniform lattices, we will show that for such lattices one can not expect to achieve a better bound than d(Γ) = O(log v).\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217204\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217204","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

Abert, Gelander和Nikolov [AGN17]推测,高阶单李群H中晶格Γ的生成子d(Γ)的数量随着H中的协同体积(Γ) v = μ(H/Γ)呈次线性增长,我们以非常强的形式证明了这一点,表明对于2−一般的H, d(Γ) = OH(log v/ log log v),这是本质上最优的。虽然我们不能证明一致格的新上界,但我们将证明,对于这样的格,我们不能期望获得比d(Γ) = O(log v)更好的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Asymptotic Number of Generators of High Rank Arithmetic Lattices
Abert, Gelander and Nikolov [AGN17] conjectured that the number of generators d(Γ) of a lattice Γ in a high rank simple Lie group H grows sub-linearly with v = μ(H/Γ), the co-volume of Γ in H. We prove this for non-uniform lattices in a very strong form, showing that for 2−generic such H’s, d(Γ) = OH(log v/ log log v), which is essentially optimal. While we can not prove a new upper bound for uniform lattices, we will show that for such lattices one can not expect to achieve a better bound than d(Γ) = O(log v).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信