{"title":"加性高斯白噪声下语音的鲁棒参数建模","authors":"A. Trabelsi, O. Mohamed, Y. Audet","doi":"10.4236/JSIP.2015.62010","DOIUrl":null,"url":null,"abstract":"In estimating the linear prediction coefficients for an autoregressive spectral model, the concept of using the Yule-Walker equations is often invoked. In case of additive white Gaussian noise (AWGN), a typical parameter compensation method involves using a minimal set of Yule-Walker equation evaluations and removing a noise variance estimate from the principal diagonal of the autocorrelation matrix. Due to a potential over-subtraction of the noise variance, however, this method may not retain the symmetric Toeplitz structure of the autocorrelation matrix and thereby may not guarantee a positive-definite matrix estimate. As a result, a significant decrease in estimation performance may occur. To counteract this problem, a parametric modelling of speech contaminated by AWGN, assuming that the noise variance can be estimated, is herein presented. It is shown that by combining a suitable noise variance estimator with an efficient iterative scheme, a significant improvement in modelling performance can be achieved. The noise variance is estimated from the least squares analysis of an overdetermined set of p lower-order Yule-Walker equations. Simulation results indicate that the proposed method provides better parameter estimates in comparison to the standard Least Mean Squares (LMS) technique which uses a minimal set of evaluations for determining the spectral parameters.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"16 1","pages":"99-108"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Parametric Modeling of Speech in Additive White Gaussian Noise\",\"authors\":\"A. Trabelsi, O. Mohamed, Y. Audet\",\"doi\":\"10.4236/JSIP.2015.62010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In estimating the linear prediction coefficients for an autoregressive spectral model, the concept of using the Yule-Walker equations is often invoked. In case of additive white Gaussian noise (AWGN), a typical parameter compensation method involves using a minimal set of Yule-Walker equation evaluations and removing a noise variance estimate from the principal diagonal of the autocorrelation matrix. Due to a potential over-subtraction of the noise variance, however, this method may not retain the symmetric Toeplitz structure of the autocorrelation matrix and thereby may not guarantee a positive-definite matrix estimate. As a result, a significant decrease in estimation performance may occur. To counteract this problem, a parametric modelling of speech contaminated by AWGN, assuming that the noise variance can be estimated, is herein presented. It is shown that by combining a suitable noise variance estimator with an efficient iterative scheme, a significant improvement in modelling performance can be achieved. The noise variance is estimated from the least squares analysis of an overdetermined set of p lower-order Yule-Walker equations. Simulation results indicate that the proposed method provides better parameter estimates in comparison to the standard Least Mean Squares (LMS) technique which uses a minimal set of evaluations for determining the spectral parameters.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"16 1\",\"pages\":\"99-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2015.62010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2015.62010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Robust Parametric Modeling of Speech in Additive White Gaussian Noise
In estimating the linear prediction coefficients for an autoregressive spectral model, the concept of using the Yule-Walker equations is often invoked. In case of additive white Gaussian noise (AWGN), a typical parameter compensation method involves using a minimal set of Yule-Walker equation evaluations and removing a noise variance estimate from the principal diagonal of the autocorrelation matrix. Due to a potential over-subtraction of the noise variance, however, this method may not retain the symmetric Toeplitz structure of the autocorrelation matrix and thereby may not guarantee a positive-definite matrix estimate. As a result, a significant decrease in estimation performance may occur. To counteract this problem, a parametric modelling of speech contaminated by AWGN, assuming that the noise variance can be estimated, is herein presented. It is shown that by combining a suitable noise variance estimator with an efficient iterative scheme, a significant improvement in modelling performance can be achieved. The noise variance is estimated from the least squares analysis of an overdetermined set of p lower-order Yule-Walker equations. Simulation results indicate that the proposed method provides better parameter estimates in comparison to the standard Least Mean Squares (LMS) technique which uses a minimal set of evaluations for determining the spectral parameters.