MICCAI BraTS 2020脑肿瘤分割中量化不确定性的挑战-排名指标和基准结果分析

Raghav Mehta, Angelos Filos, Ujjwal Baid, C. Sako, Richard McKinley, M. Rebsamen, K. Datwyler, Raphael Meier, P. Radojewski, G. Murugesan, S. Nalawade, Chandan Ganesh, B. Wagner, F. Yu, B. Fei, A. Madhuranthakam, J. Maldjian, L. Daza, Catalina G'omez, P. Arbel'aez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, E. Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, L. Pei, A. Murat, Sarahi Rosas-Gonz'alez, Illyess Zemmoura, C. Tauber, Minh H. Vu, T. Nyholm, T. Lofstedt, Laura Mora Ballestar, Verónica Vilaplana, Hugh McHugh, G. M. Talou, Alan Wang, J. Patel, Ken Chang, K. Hoebel, M. Gidwani, N. Arun, Sharut Gupta, M. Aggarwal, Praveer Singh, E. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, L. Vidyaratne, Md Monibor Rahman, K. Iftekharuddin, J. Chazalon, É. Puybareau, G. Tochon, Jun Ma, M. Cabezas, X. Lladó, A. Oliver, Liliana Valencia, S. Valverde, Mehdi Amian, M. Soltaninejad, A. Myronenko, Ali Hatamizadeh, Xuejing Feng, Q. Dou, N. Tustison, Craig Meyer, Nisarg A. Shah, S. Ta
{"title":"MICCAI BraTS 2020脑肿瘤分割中量化不确定性的挑战-排名指标和基准结果分析","authors":"Raghav Mehta, Angelos Filos, Ujjwal Baid, C. Sako, Richard McKinley, M. Rebsamen, K. Datwyler, Raphael Meier, P. Radojewski, G. Murugesan, S. Nalawade, Chandan Ganesh, B. Wagner, F. Yu, B. Fei, A. Madhuranthakam, J. Maldjian, L. Daza, Catalina G'omez, P. Arbel'aez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, E. Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, L. Pei, A. Murat, Sarahi Rosas-Gonz'alez, Illyess Zemmoura, C. Tauber, Minh H. Vu, T. Nyholm, T. Lofstedt, Laura Mora Ballestar, Verónica Vilaplana, Hugh McHugh, G. M. Talou, Alan Wang, J. Patel, Ken Chang, K. Hoebel, M. Gidwani, N. Arun, Sharut Gupta, M. Aggarwal, Praveer Singh, E. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, L. Vidyaratne, Md Monibor Rahman, K. Iftekharuddin, J. Chazalon, É. Puybareau, G. Tochon, Jun Ma, M. Cabezas, X. Lladó, A. Oliver, Liliana Valencia, S. Valverde, Mehdi Amian, M. Soltaninejad, A. Myronenko, Ali Hatamizadeh, Xuejing Feng, Q. Dou, N. Tustison, Craig Meyer, Nisarg A. Shah, S. Ta","doi":"10.59275/j.melba.2022-354b","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.","PeriodicalId":75083,"journal":{"name":"The journal of machine learning for biomedical imaging","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Metrics and Benchmarking Results\",\"authors\":\"Raghav Mehta, Angelos Filos, Ujjwal Baid, C. Sako, Richard McKinley, M. Rebsamen, K. Datwyler, Raphael Meier, P. Radojewski, G. Murugesan, S. Nalawade, Chandan Ganesh, B. Wagner, F. Yu, B. Fei, A. Madhuranthakam, J. Maldjian, L. Daza, Catalina G'omez, P. Arbel'aez, Chengliang Dai, Shuo Wang, Hadrien Raynaud, Yuanhan Mo, E. Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, L. Pei, A. Murat, Sarahi Rosas-Gonz'alez, Illyess Zemmoura, C. Tauber, Minh H. Vu, T. Nyholm, T. Lofstedt, Laura Mora Ballestar, Verónica Vilaplana, Hugh McHugh, G. M. Talou, Alan Wang, J. Patel, Ken Chang, K. Hoebel, M. Gidwani, N. Arun, Sharut Gupta, M. Aggarwal, Praveer Singh, E. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, L. Vidyaratne, Md Monibor Rahman, K. Iftekharuddin, J. Chazalon, É. Puybareau, G. Tochon, Jun Ma, M. Cabezas, X. Lladó, A. Oliver, Liliana Valencia, S. Valverde, Mehdi Amian, M. Soltaninejad, A. Myronenko, Ali Hatamizadeh, Xuejing Feng, Q. Dou, N. Tustison, Craig Meyer, Nisarg A. Shah, S. Ta\",\"doi\":\"10.59275/j.melba.2022-354b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.\",\"PeriodicalId\":75083,\"journal\":{\"name\":\"The journal of machine learning for biomedical imaging\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journal of machine learning for biomedical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59275/j.melba.2022-354b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journal of machine learning for biomedical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59275/j.melba.2022-354b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

深度学习(DL)模型在各种医学成像基准挑战中提供了最先进的性能,包括脑肿瘤分割(BraTS)挑战。然而,局灶性病理多室分割(例如,肿瘤和病变亚区域)的任务尤其具有挑战性,并且潜在的错误阻碍了将DL模型转化为临床工作流程。以不确定性的形式量化DL模型预测的可靠性可以使临床审查最不确定的区域,从而建立信任并为临床翻译铺平道路。近年来引入了几种不确定度估计方法用于深度学习医学图像分割任务。开发分数来评估和比较不确定性度量的性能将有助于最终用户做出更明智的决策。在本研究中,我们探索和评估了BraTS 2019和BraTS 2020不确定性量化任务(q -BraTS)中开发的评分,该评分旨在评估和排名脑肿瘤多室分割的不确定性估计。该分数(1)奖励对正确断言产生高置信度的不确定性估计,以及对不正确断言分配低置信度的不确定性估计,并且(2)惩罚导致较高百分比的不确定正确断言的不确定性度量。我们进一步对14个独立参与qui -BraTS 2020的团队产生的分割不确定性进行基准测试,这些团队都参与了BraTS的主要分割任务。总的来说,我们的研究结果证实了不确定性估计对分割算法的重要性和补充价值,强调了医学图像分析中不确定性量化的必要性。最后,为了提高透明度和可再现性,我们的评估代码在https://github.com/RagMeh11/QU-BraTS上公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Metrics and Benchmarking Results
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信