{"title":"语篇级信息的衔接与双语语篇连接词汇的归纳","authors":"Sibel Özer, Murathan Kurfali, Deniz Zeyrek, Amália Mendes, Giedre Valunaite Oleskeviciene","doi":"10.3233/sw-223011","DOIUrl":null,"url":null,"abstract":"The single biggest obstacle in performing comprehensive cross-lingual discourse analysis is the scarcity of multilingual resources. The existing resources are overwhelmingly monolingual, compelling researchers to infer the discourse-level information in the target languages through error-prone automatic means. The current paper aims to provide a more direct insight into the cross-lingual variations in discourse structures by linking the annotated relations of the TED-Multilingual Discourse Bank, which consists of independently annotated six TED talks in seven different languages. It is shown that the linguistic labels over the relations annotated in the texts of these languages can be automatically linked with English with high accuracy, as verified against the relations of three diverse languages semi-automatically linked with relations over English texts. The resulting corpus has a great potential to reveal the divergences in local discourse relations, as well as leading to new resources, as exemplified by the induction of bilingual discourse connective lexicons.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"103 1","pages":"1081-1102"},"PeriodicalIF":3.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linking discourse-level information and the induction of bilingual discourse connective lexicons\",\"authors\":\"Sibel Özer, Murathan Kurfali, Deniz Zeyrek, Amália Mendes, Giedre Valunaite Oleskeviciene\",\"doi\":\"10.3233/sw-223011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The single biggest obstacle in performing comprehensive cross-lingual discourse analysis is the scarcity of multilingual resources. The existing resources are overwhelmingly monolingual, compelling researchers to infer the discourse-level information in the target languages through error-prone automatic means. The current paper aims to provide a more direct insight into the cross-lingual variations in discourse structures by linking the annotated relations of the TED-Multilingual Discourse Bank, which consists of independently annotated six TED talks in seven different languages. It is shown that the linguistic labels over the relations annotated in the texts of these languages can be automatically linked with English with high accuracy, as verified against the relations of three diverse languages semi-automatically linked with relations over English texts. The resulting corpus has a great potential to reveal the divergences in local discourse relations, as well as leading to new resources, as exemplified by the induction of bilingual discourse connective lexicons.\",\"PeriodicalId\":48694,\"journal\":{\"name\":\"Semantic Web\",\"volume\":\"103 1\",\"pages\":\"1081-1102\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/sw-223011\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223011","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Linking discourse-level information and the induction of bilingual discourse connective lexicons
The single biggest obstacle in performing comprehensive cross-lingual discourse analysis is the scarcity of multilingual resources. The existing resources are overwhelmingly monolingual, compelling researchers to infer the discourse-level information in the target languages through error-prone automatic means. The current paper aims to provide a more direct insight into the cross-lingual variations in discourse structures by linking the annotated relations of the TED-Multilingual Discourse Bank, which consists of independently annotated six TED talks in seven different languages. It is shown that the linguistic labels over the relations annotated in the texts of these languages can be automatically linked with English with high accuracy, as verified against the relations of three diverse languages semi-automatically linked with relations over English texts. The resulting corpus has a great potential to reveal the divergences in local discourse relations, as well as leading to new resources, as exemplified by the induction of bilingual discourse connective lexicons.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.