{"title":"UAVSAR实时嵌入式GPU处理器","authors":"B. Hawkins, W. Tung","doi":"10.1109/IGARSS.2019.8900055","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"42 1","pages":"545-547"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"UAVSAR Real-Time Embedded GPU Processor\",\"authors\":\"B. Hawkins, W. Tung\",\"doi\":\"10.1109/IGARSS.2019.8900055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"42 1\",\"pages\":\"545-547\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthetic aperture radar (SAR) can provide high-resolution imagery regardless of cloud cover or lighting conditions. These qualities make SAR potentially well-suited for informing response efforts to natural and man-made disasters, but such applications require data products with minimal latency. To meet this challenge, we implemented a real-time SAR processor capable of producing 10 m imagery using an NVIDIA Jetson TX2 embedded GPU module. With its low mass (87 g module) and power consumption under 8 W, the system also holds promise for spaceborne applications.