利用政治社交网络用户档案和多模态媒体内容学习语义保留空间

Wei-Hao Chang, Jeng-Lin Li, Chi-Chun Lee
{"title":"利用政治社交网络用户档案和多模态媒体内容学习语义保留空间","authors":"Wei-Hao Chang, Jeng-Lin Li, Chi-Chun Lee","doi":"10.1109/ICASSP.2019.8682596","DOIUrl":null,"url":null,"abstract":"The use of social media in politics has dramatically changed the way campaigns are run and how elected officials interact with their constituents. An advanced algorithm is required to analyze and understand this large amount of heterogeneous social media data to investigate several key issues, such as stance and strategy, in political science. Most of previous works concentrate their studies using text-as-data approach, where the rich yet heterogeneous information in the user profile, social relationship, and multimodal media content is largely ignored. In this work, we propose a two-branch network that jointly maps the post contents and politician profile into the same latent space, which is trained using a large-margin objective that combines a cross-instance distance constraint with a within-instance semantic-preserving constraint. Our proposed political embedding space can be utilized not only in reliably identifying political spectrum and message type but also in providing a political representation space for interpretable ease-of-visualization.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"42 1","pages":"3990-3994"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning Semantic-preserving Space Using User Profile and Multimodal Media Content from Political Social Network\",\"authors\":\"Wei-Hao Chang, Jeng-Lin Li, Chi-Chun Lee\",\"doi\":\"10.1109/ICASSP.2019.8682596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of social media in politics has dramatically changed the way campaigns are run and how elected officials interact with their constituents. An advanced algorithm is required to analyze and understand this large amount of heterogeneous social media data to investigate several key issues, such as stance and strategy, in political science. Most of previous works concentrate their studies using text-as-data approach, where the rich yet heterogeneous information in the user profile, social relationship, and multimodal media content is largely ignored. In this work, we propose a two-branch network that jointly maps the post contents and politician profile into the same latent space, which is trained using a large-margin objective that combines a cross-instance distance constraint with a within-instance semantic-preserving constraint. Our proposed political embedding space can be utilized not only in reliably identifying political spectrum and message type but also in providing a political representation space for interpretable ease-of-visualization.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"42 1\",\"pages\":\"3990-3994\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

社交媒体在政治中的使用极大地改变了竞选活动的运作方式,以及当选官员与选民的互动方式。需要一种先进的算法来分析和理解这大量异构的社交媒体数据,以研究政治学中的几个关键问题,如立场和策略。以往的研究大多集中在文本即数据的方法上,忽略了用户档案、社会关系和多模态媒体内容中丰富而异构的信息。在这项工作中,我们提出了一个双分支网络,该网络将帖子内容和政治家简介共同映射到相同的潜在空间中,该网络使用结合了跨实例距离约束和实例内语义保留约束的大边界目标进行训练。我们提出的政治嵌入空间不仅可以用于可靠地识别政治光谱和信息类型,还可以用于提供可解释的易于可视化的政治表示空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Semantic-preserving Space Using User Profile and Multimodal Media Content from Political Social Network
The use of social media in politics has dramatically changed the way campaigns are run and how elected officials interact with their constituents. An advanced algorithm is required to analyze and understand this large amount of heterogeneous social media data to investigate several key issues, such as stance and strategy, in political science. Most of previous works concentrate their studies using text-as-data approach, where the rich yet heterogeneous information in the user profile, social relationship, and multimodal media content is largely ignored. In this work, we propose a two-branch network that jointly maps the post contents and politician profile into the same latent space, which is trained using a large-margin objective that combines a cross-instance distance constraint with a within-instance semantic-preserving constraint. Our proposed political embedding space can be utilized not only in reliably identifying political spectrum and message type but also in providing a political representation space for interpretable ease-of-visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信