{"title":"辐射诱导黑腹果蝇遗传隐性基因突变的性质","authors":"I. Alexandrov, M. Alexandrova, K. Afanasyeva","doi":"10.33696/genetics.1.003","DOIUrl":null,"url":null,"abstract":"Analysis of early [1] and current [2] data on epidemiology and genetics of inherited developmental anomalies and other disorders allows us to note an interesting and important fact that among the various detected genetic changes, point mutations underlie almost one-half of the recessive Mendelian diseases [1] circulating in modern human populations. At the same time, the results of molecular analysis showed that the DNA changes underlying these mutations are represented mainly by base substitutions, indels, extended deletions or insertions and duplications [3-5]. Taking into account the well-known and important fact that the most dangerous mutagen for human is ionizing radiation with which humans are increasingly exposed on Earth (nuclear power station, radiotherapy, neutron research, nuclear disaster etc.) and in outer space. Therefore, it is important to know: (i) does ionizing radiation induces point mutations in germ cells in general, (ii) if so, what is the efficiency of sparsely and densely ionizing radiation in induction of such mutations, and (iii) what DNA changes underlie these mutations.","PeriodicalId":72286,"journal":{"name":"Archives of molecular biology and genetics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nature of Radiation-induced Inherited Recessive Gene Mutations in Drosophila Melanogaster\",\"authors\":\"I. Alexandrov, M. Alexandrova, K. Afanasyeva\",\"doi\":\"10.33696/genetics.1.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of early [1] and current [2] data on epidemiology and genetics of inherited developmental anomalies and other disorders allows us to note an interesting and important fact that among the various detected genetic changes, point mutations underlie almost one-half of the recessive Mendelian diseases [1] circulating in modern human populations. At the same time, the results of molecular analysis showed that the DNA changes underlying these mutations are represented mainly by base substitutions, indels, extended deletions or insertions and duplications [3-5]. Taking into account the well-known and important fact that the most dangerous mutagen for human is ionizing radiation with which humans are increasingly exposed on Earth (nuclear power station, radiotherapy, neutron research, nuclear disaster etc.) and in outer space. Therefore, it is important to know: (i) does ionizing radiation induces point mutations in germ cells in general, (ii) if so, what is the efficiency of sparsely and densely ionizing radiation in induction of such mutations, and (iii) what DNA changes underlie these mutations.\",\"PeriodicalId\":72286,\"journal\":{\"name\":\"Archives of molecular biology and genetics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of molecular biology and genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33696/genetics.1.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of molecular biology and genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/genetics.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Nature of Radiation-induced Inherited Recessive Gene Mutations in Drosophila Melanogaster
Analysis of early [1] and current [2] data on epidemiology and genetics of inherited developmental anomalies and other disorders allows us to note an interesting and important fact that among the various detected genetic changes, point mutations underlie almost one-half of the recessive Mendelian diseases [1] circulating in modern human populations. At the same time, the results of molecular analysis showed that the DNA changes underlying these mutations are represented mainly by base substitutions, indels, extended deletions or insertions and duplications [3-5]. Taking into account the well-known and important fact that the most dangerous mutagen for human is ionizing radiation with which humans are increasingly exposed on Earth (nuclear power station, radiotherapy, neutron research, nuclear disaster etc.) and in outer space. Therefore, it is important to know: (i) does ionizing radiation induces point mutations in germ cells in general, (ii) if so, what is the efficiency of sparsely and densely ionizing radiation in induction of such mutations, and (iii) what DNA changes underlie these mutations.