基于技术分析的支持向量机证券交易自动预测系统

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
I. Agusta, Ali Ridho Barakbah, A. Fariza
{"title":"基于技术分析的支持向量机证券交易自动预测系统","authors":"I. Agusta, Ali Ridho Barakbah, A. Fariza","doi":"10.24003/emitter.v10i2.740","DOIUrl":null,"url":null,"abstract":"Stock exchange trading has been utilized to gain profit by constantly buying and selling best-performing stocks in a short term. Deep knowledge, time dedication, and experience are essential for optimizing profit if stock price fluctuations are analyzed manually. This research proposes a new trading prediction system that has the ability to automatically predict the accurate time for buying and selling stock using a combination of technical analysis and support vector machine (SVM). Technical analysis is used to analyze stock price fluctuation based on historical data by utilizing technical indicators such as moving average, Bollinger bands, relative strength index, stochastic oscillator, and Aroon oscillator. SVM maps inputs into higher dimensional spaces using non-linear kernel functions, making it suitable for various technical indicators implementation as inputs in stock trading prediction. Experimentation on five Indonesian stocks reveals that the combination of technical analysis and support vector machine is best suited for continuously fluctuated stocks, with the highest accuracy of 77.8%.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Analysis Based Automatic Trading Prediction System for Stock Exchange using Support Vector Machine\",\"authors\":\"I. Agusta, Ali Ridho Barakbah, A. Fariza\",\"doi\":\"10.24003/emitter.v10i2.740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock exchange trading has been utilized to gain profit by constantly buying and selling best-performing stocks in a short term. Deep knowledge, time dedication, and experience are essential for optimizing profit if stock price fluctuations are analyzed manually. This research proposes a new trading prediction system that has the ability to automatically predict the accurate time for buying and selling stock using a combination of technical analysis and support vector machine (SVM). Technical analysis is used to analyze stock price fluctuation based on historical data by utilizing technical indicators such as moving average, Bollinger bands, relative strength index, stochastic oscillator, and Aroon oscillator. SVM maps inputs into higher dimensional spaces using non-linear kernel functions, making it suitable for various technical indicators implementation as inputs in stock trading prediction. Experimentation on five Indonesian stocks reveals that the combination of technical analysis and support vector machine is best suited for continuously fluctuated stocks, with the highest accuracy of 77.8%.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24003/emitter.v10i2.740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24003/emitter.v10i2.740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

证券交易所交易已经被用来通过在短期内不断买卖表现最好的股票来获得利润。如果手工分析股票价格波动,深入的知识、时间投入和经验对于优化利润是必不可少的。本文提出了一种新的交易预测系统,该系统将技术分析与支持向量机(SVM)相结合,能够自动预测准确的股票买卖时间。技术分析是利用移动平均线、布林带、相对强弱指标、随机振荡指标、阿龙振荡指标等技术指标,以历史数据为基础,分析股票价格波动的方法。支持向量机使用非线性核函数将输入映射到高维空间,使其适用于各种技术指标作为股票交易预测的输入实现。对5只印度尼西亚股票的实验表明,技术分析与支持向量机相结合最适合连续波动股票,准确率最高达77.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technical Analysis Based Automatic Trading Prediction System for Stock Exchange using Support Vector Machine
Stock exchange trading has been utilized to gain profit by constantly buying and selling best-performing stocks in a short term. Deep knowledge, time dedication, and experience are essential for optimizing profit if stock price fluctuations are analyzed manually. This research proposes a new trading prediction system that has the ability to automatically predict the accurate time for buying and selling stock using a combination of technical analysis and support vector machine (SVM). Technical analysis is used to analyze stock price fluctuation based on historical data by utilizing technical indicators such as moving average, Bollinger bands, relative strength index, stochastic oscillator, and Aroon oscillator. SVM maps inputs into higher dimensional spaces using non-linear kernel functions, making it suitable for various technical indicators implementation as inputs in stock trading prediction. Experimentation on five Indonesian stocks reveals that the combination of technical analysis and support vector machine is best suited for continuously fluctuated stocks, with the highest accuracy of 77.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信