高速网络流量分析:检测安全大数据流中的VoIP呼叫

M. Rathore, Anand Paul, Awais Ahmad, M. Imran, M. Guizani
{"title":"高速网络流量分析:检测安全大数据流中的VoIP呼叫","authors":"M. Rathore, Anand Paul, Awais Ahmad, M. Imran, M. Guizani","doi":"10.1109/LCN.2016.128","DOIUrl":null,"url":null,"abstract":"Internet service providers (ISPs) and telecommunication authorities are interested in detecting VoIP calls either to block illegal commercial VoIP or prioritize the paid users VoIP calls. Signature-based, port-based, and pattern-based VoIP detection techniques are not more accurate and not efficient due to complex security and tunneling mechanisms used by VoIP. Therefore, in this paper, we propose a rule-based generic, robust, and efficient statistical analysis-based solution to identify encrypted, non-encrypted, or tunneled VoIP media (voice) flows using threshold approach. In addition, a system is proposed to efficiently process high-speed real-time network traffic. The accuracy and efficiency evaluation results and the comparative study show that the proposed system outperforms the existing systems with the ability to work in real-time and high-speed Big Data environment.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"6 1","pages":"595-598"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-Speed Network Traffic Analysis: Detecting VoIP Calls in Secure Big Data Streaming\",\"authors\":\"M. Rathore, Anand Paul, Awais Ahmad, M. Imran, M. Guizani\",\"doi\":\"10.1109/LCN.2016.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet service providers (ISPs) and telecommunication authorities are interested in detecting VoIP calls either to block illegal commercial VoIP or prioritize the paid users VoIP calls. Signature-based, port-based, and pattern-based VoIP detection techniques are not more accurate and not efficient due to complex security and tunneling mechanisms used by VoIP. Therefore, in this paper, we propose a rule-based generic, robust, and efficient statistical analysis-based solution to identify encrypted, non-encrypted, or tunneled VoIP media (voice) flows using threshold approach. In addition, a system is proposed to efficiently process high-speed real-time network traffic. The accuracy and efficiency evaluation results and the comparative study show that the proposed system outperforms the existing systems with the ability to work in real-time and high-speed Big Data environment.\",\"PeriodicalId\":6864,\"journal\":{\"name\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"volume\":\"6 1\",\"pages\":\"595-598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 41st Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.2016.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

互联网服务提供商(isp)和电信当局对检测VoIP呼叫感兴趣,要么阻止非法商业VoIP呼叫,要么优先考虑付费用户的VoIP呼叫。基于签名、端口和模式的VoIP检测技术由于VoIP使用复杂的安全性和隧道机制,精度和效率都不高。因此,在本文中,我们提出了一种基于规则的通用、鲁棒和高效的基于统计分析的解决方案,以使用阈值方法识别加密、非加密或隧道式VoIP媒体(语音)流。此外,还提出了一种高效处理高速实时网络流量的系统。准确度和效率评估结果及对比研究表明,该系统优于现有系统,能够在实时、高速的大数据环境下工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Speed Network Traffic Analysis: Detecting VoIP Calls in Secure Big Data Streaming
Internet service providers (ISPs) and telecommunication authorities are interested in detecting VoIP calls either to block illegal commercial VoIP or prioritize the paid users VoIP calls. Signature-based, port-based, and pattern-based VoIP detection techniques are not more accurate and not efficient due to complex security and tunneling mechanisms used by VoIP. Therefore, in this paper, we propose a rule-based generic, robust, and efficient statistical analysis-based solution to identify encrypted, non-encrypted, or tunneled VoIP media (voice) flows using threshold approach. In addition, a system is proposed to efficiently process high-speed real-time network traffic. The accuracy and efficiency evaluation results and the comparative study show that the proposed system outperforms the existing systems with the ability to work in real-time and high-speed Big Data environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信