{"title":"高温钛合金线材电火花加工尺寸偏差的研究","authors":"M. Garg, Ajai Jain, G. Bhushan","doi":"10.4103/0976-8580.99298","DOIUrl":null,"url":null,"abstract":"This article investigates the Wire Electric Discharge Machining of Titanium alloy 6-2-4-2. Six process parameters namely pulse-on time, pulse-off time, peak current, spark gap set voltage, wire feed, and wire tension are taken into account, to study their effect on dimensional deviation. The experiments are conducted using Box-Behnken designs. Empirical relation is developed between the process parameters and dimensional deviation by using regression analysis. Analysis of Variance is carried out to identify the significant process parameters affecting the process. Consequently, the optimal sets of parameters yielding the minimum dimensional deviation are obtained using the desirability approach. The optimal parameter combinations have been verified by conducting confirmation experiments. Results of the confirmation tests show that the developed mathematical models are appropriate for effective machining of Titanium alloy using Wire Electric Discharge Machining.","PeriodicalId":53400,"journal":{"name":"Pakistan Journal of Engineering Technology","volume":"26 1","pages":"104"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Investigation into Dimensional Deviation Induced by Wire Electric Discharge Machining of High temperature Titanium alloy\",\"authors\":\"M. Garg, Ajai Jain, G. Bhushan\",\"doi\":\"10.4103/0976-8580.99298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the Wire Electric Discharge Machining of Titanium alloy 6-2-4-2. Six process parameters namely pulse-on time, pulse-off time, peak current, spark gap set voltage, wire feed, and wire tension are taken into account, to study their effect on dimensional deviation. The experiments are conducted using Box-Behnken designs. Empirical relation is developed between the process parameters and dimensional deviation by using regression analysis. Analysis of Variance is carried out to identify the significant process parameters affecting the process. Consequently, the optimal sets of parameters yielding the minimum dimensional deviation are obtained using the desirability approach. The optimal parameter combinations have been verified by conducting confirmation experiments. Results of the confirmation tests show that the developed mathematical models are appropriate for effective machining of Titanium alloy using Wire Electric Discharge Machining.\",\"PeriodicalId\":53400,\"journal\":{\"name\":\"Pakistan Journal of Engineering Technology\",\"volume\":\"26 1\",\"pages\":\"104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/0976-8580.99298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/0976-8580.99298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Investigation into Dimensional Deviation Induced by Wire Electric Discharge Machining of High temperature Titanium alloy
This article investigates the Wire Electric Discharge Machining of Titanium alloy 6-2-4-2. Six process parameters namely pulse-on time, pulse-off time, peak current, spark gap set voltage, wire feed, and wire tension are taken into account, to study their effect on dimensional deviation. The experiments are conducted using Box-Behnken designs. Empirical relation is developed between the process parameters and dimensional deviation by using regression analysis. Analysis of Variance is carried out to identify the significant process parameters affecting the process. Consequently, the optimal sets of parameters yielding the minimum dimensional deviation are obtained using the desirability approach. The optimal parameter combinations have been verified by conducting confirmation experiments. Results of the confirmation tests show that the developed mathematical models are appropriate for effective machining of Titanium alloy using Wire Electric Discharge Machining.