{"title":"基于数据梳的元宇宙大数据边缘计算模型增强","authors":"Lakshmikanth Rajath Mohan T, N. Jayapandian","doi":"10.1109/IDCIoT56793.2023.10053519","DOIUrl":null,"url":null,"abstract":"The Metaverse is a huge project undertaken by Facebook in order to bring the world closer together and help people live out their dreams. Even handicapped can travel across the world. People can visit any place and would be safe in the comfort of their homes. Meta (Previously Facebook) plans to execute this by using a combination of AR and VR (Augmented Reality and Virtual Reality). Facebook aims to bring this technology to the people soon. However, a big factor in this idea that needs to be accounted for is the amount of data generation that will take place. Many Computer Science professors and scientists believe that the amount of data Meta is going to generate in one day would almost be equal to the amount of data Instagram/Facebook would have generated in their entire lifetime. This will push the entire data generation by at least 30%, if not more. Using traditional methods such as cloud computing might seem to become a shortcoming in the near future. This is because the servers might not be able to handle such large amounts of data. The solution to this problem should be a system that is designed specifically for handling data that is extremely large. A system that is not only secure, resilient and robust but also must be able to handle multiple requests and connections at once and yet not slow down when the number of requests increases gradually over time. In this model, a solution called the DHA (Data Hive Architecture) is provided. These DHAs are made up of multiple subunits called Data Combs and those are further broken down into data cells. These are small units of memory which can process big data extremely fast. When information is requested from a client (Example: A Data Warehouse) that is stored in multiple edges across the world, then these Data Combs rearrange the data cells within them on the basis of the requested criteria. This article aims to explain this concept of data combs and its usage in the Metaverse.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"72 1","pages":"249-255"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Edge Computing Model by using Data Combs for Big Data in Metaverse\",\"authors\":\"Lakshmikanth Rajath Mohan T, N. Jayapandian\",\"doi\":\"10.1109/IDCIoT56793.2023.10053519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Metaverse is a huge project undertaken by Facebook in order to bring the world closer together and help people live out their dreams. Even handicapped can travel across the world. People can visit any place and would be safe in the comfort of their homes. Meta (Previously Facebook) plans to execute this by using a combination of AR and VR (Augmented Reality and Virtual Reality). Facebook aims to bring this technology to the people soon. However, a big factor in this idea that needs to be accounted for is the amount of data generation that will take place. Many Computer Science professors and scientists believe that the amount of data Meta is going to generate in one day would almost be equal to the amount of data Instagram/Facebook would have generated in their entire lifetime. This will push the entire data generation by at least 30%, if not more. Using traditional methods such as cloud computing might seem to become a shortcoming in the near future. This is because the servers might not be able to handle such large amounts of data. The solution to this problem should be a system that is designed specifically for handling data that is extremely large. A system that is not only secure, resilient and robust but also must be able to handle multiple requests and connections at once and yet not slow down when the number of requests increases gradually over time. In this model, a solution called the DHA (Data Hive Architecture) is provided. These DHAs are made up of multiple subunits called Data Combs and those are further broken down into data cells. These are small units of memory which can process big data extremely fast. When information is requested from a client (Example: A Data Warehouse) that is stored in multiple edges across the world, then these Data Combs rearrange the data cells within them on the basis of the requested criteria. This article aims to explain this concept of data combs and its usage in the Metaverse.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"72 1\",\"pages\":\"249-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Edge Computing Model by using Data Combs for Big Data in Metaverse
The Metaverse is a huge project undertaken by Facebook in order to bring the world closer together and help people live out their dreams. Even handicapped can travel across the world. People can visit any place and would be safe in the comfort of their homes. Meta (Previously Facebook) plans to execute this by using a combination of AR and VR (Augmented Reality and Virtual Reality). Facebook aims to bring this technology to the people soon. However, a big factor in this idea that needs to be accounted for is the amount of data generation that will take place. Many Computer Science professors and scientists believe that the amount of data Meta is going to generate in one day would almost be equal to the amount of data Instagram/Facebook would have generated in their entire lifetime. This will push the entire data generation by at least 30%, if not more. Using traditional methods such as cloud computing might seem to become a shortcoming in the near future. This is because the servers might not be able to handle such large amounts of data. The solution to this problem should be a system that is designed specifically for handling data that is extremely large. A system that is not only secure, resilient and robust but also must be able to handle multiple requests and connections at once and yet not slow down when the number of requests increases gradually over time. In this model, a solution called the DHA (Data Hive Architecture) is provided. These DHAs are made up of multiple subunits called Data Combs and those are further broken down into data cells. These are small units of memory which can process big data extremely fast. When information is requested from a client (Example: A Data Warehouse) that is stored in multiple edges across the world, then these Data Combs rearrange the data cells within them on the basis of the requested criteria. This article aims to explain this concept of data combs and its usage in the Metaverse.