晚播对40代面包小麦形态和产量性状的影响

Muhammad Adnan, Abdullah Khan, F. Mohammad, Fawad Ali, Quaid Hussain
{"title":"晚播对40代面包小麦形态和产量性状的影响","authors":"Muhammad Adnan, Abdullah Khan, F. Mohammad, Fawad Ali, Quaid Hussain","doi":"10.56946/jspae.v1i1.2","DOIUrl":null,"url":null,"abstract":"The unpredictability and large fluctuation of the climatic conditions in rainfed regions influences spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of late sowing on wheat morphology and grain yield was studied in different 40s bread wheat at the research farm of PBG, The University of Agriculture Peshawar, Pakistan during 2013-14. Forty wheat genotypes were tested under normal and late sowing in 5 × 8 alpha lattice design with three replicates. Combined analysis of variance exhibited significant genotype by environment interactions for days to heading, flag leaf area, days to maturity, plant height, spikes m-2, grains spike-1,1000-grain weight, biomass yield, grain yield and harvest index.  Days to emergence, headings, maturity ranged from 9 to 12, 111 to 121 and 155 to 164 days under normal while under late planting it ranged from 25 to 29, 95 to107 and 137 to 143 days. Mean data under normal planting ranged between 77 to 125cm; 25 to 41cm2; 99 to 199; 10 to 13 cm 32 to 49; 52 to 88g; 8533 to 13667 kg, 1869 to 4681 kg; 21 to 35% whereas under late planting its range was 63 to 91 cm, 18 to 37 cm2, 57 to 137, 8 to 12 cm, 22 to 52, 36 to 75g, 2400 to 7933 kg, 540 to 2739 kg and 20 to 42% for plant height, flag leaf area, spikes m-2, spike length, grains spike-1, 1000-grain weight, biomass, grain yield and harvest index, respectively. Wheat genotypes planted at late condition took maximum days to emergence, while less number of days were reacquired for wheat genotypes planted at normal sowing date to get mature. Late planting negatively affected all yield contributing traits like; spikes m-2 (29%), grains spike-1 (18%) 1000-grain weight (29 %), biomass (55%) and grain yield (50 %). On the basis of the current exploration, it is obtained that genotype SRN 19111 was identified superior for 1000-grain weight, biomass yield and grain yield under normal planting, while genotype PR-107 exhibited higher grain yield under late planting. Therefore, these genotypes are recommended for further extensive testing.","PeriodicalId":29812,"journal":{"name":"Journal of Soil, Plant and Environment","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of late sowing on morphological and yield traits in 40s bread wheat\",\"authors\":\"Muhammad Adnan, Abdullah Khan, F. Mohammad, Fawad Ali, Quaid Hussain\",\"doi\":\"10.56946/jspae.v1i1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unpredictability and large fluctuation of the climatic conditions in rainfed regions influences spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of late sowing on wheat morphology and grain yield was studied in different 40s bread wheat at the research farm of PBG, The University of Agriculture Peshawar, Pakistan during 2013-14. Forty wheat genotypes were tested under normal and late sowing in 5 × 8 alpha lattice design with three replicates. Combined analysis of variance exhibited significant genotype by environment interactions for days to heading, flag leaf area, days to maturity, plant height, spikes m-2, grains spike-1,1000-grain weight, biomass yield, grain yield and harvest index.  Days to emergence, headings, maturity ranged from 9 to 12, 111 to 121 and 155 to 164 days under normal while under late planting it ranged from 25 to 29, 95 to107 and 137 to 143 days. Mean data under normal planting ranged between 77 to 125cm; 25 to 41cm2; 99 to 199; 10 to 13 cm 32 to 49; 52 to 88g; 8533 to 13667 kg, 1869 to 4681 kg; 21 to 35% whereas under late planting its range was 63 to 91 cm, 18 to 37 cm2, 57 to 137, 8 to 12 cm, 22 to 52, 36 to 75g, 2400 to 7933 kg, 540 to 2739 kg and 20 to 42% for plant height, flag leaf area, spikes m-2, spike length, grains spike-1, 1000-grain weight, biomass, grain yield and harvest index, respectively. Wheat genotypes planted at late condition took maximum days to emergence, while less number of days were reacquired for wheat genotypes planted at normal sowing date to get mature. Late planting negatively affected all yield contributing traits like; spikes m-2 (29%), grains spike-1 (18%) 1000-grain weight (29 %), biomass (55%) and grain yield (50 %). On the basis of the current exploration, it is obtained that genotype SRN 19111 was identified superior for 1000-grain weight, biomass yield and grain yield under normal planting, while genotype PR-107 exhibited higher grain yield under late planting. Therefore, these genotypes are recommended for further extensive testing.\",\"PeriodicalId\":29812,\"journal\":{\"name\":\"Journal of Soil, Plant and Environment\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil, Plant and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56946/jspae.v1i1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil, Plant and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jspae.v1i1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

旱旱区气候条件的不可预测性和波动较大,影响着春小麦产量和籽粒品质。这些变化为生产质量更好的小麦提供了机会。2013- 2014年,在巴基斯坦白沙瓦农业大学PBG研究农场,研究了晚播对不同40代面包小麦形态和产量的影响。采用5 × 8 α晶格设计,3个重复,对40个小麦基因型进行了正常和晚播试验。综合方差分析显示,抽穗期、旗叶面积、成熟期、株高、穗m-2、穗1、千粒重、生物量产量、籽粒产量和收获指数的环境互作均具有显著的基因型。出苗期、抽穗期、成熟期分别为9 ~ 12天、111 ~ 121天和155 ~ 164天,晚播期分别为25 ~ 29天、95 ~ 107天和137 ~ 143天。正常种植下的平均数据在77至125厘米之间;25 ~ 41cm2;99 ~ 199;10至13厘米32至49;52至88克;8533 ~ 13667公斤,1869 ~ 4681公斤;株高、旗叶面积、穗m-2、穗长、穗1、穗重、千粒重、生物量、籽粒产量和收获指数分别为63 ~ 91 cm、18 ~ 37 cm2、57 ~ 137、8 ~ 12 cm、22 ~ 52、36 ~ 75g、2400 ~ 7933 kg、540 ~ 2739 kg和20 ~ 42%。晚播小麦基因型的出苗期最长,而正常播期小麦基因型的成熟期较短。晚播对产量贡献性状均有负向影响,如;穗m-2(29%)、穗1(18%)、千粒重(29%)、生物量(55%)和籽粒产量(50%)。结果表明,SRN 19111基因型在正常种植条件下具有较好的千粒重、生物量产量和籽粒产量,PR-107基因型在晚播条件下具有较高的籽粒产量。因此,建议对这些基因型进行进一步的广泛检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of late sowing on morphological and yield traits in 40s bread wheat
The unpredictability and large fluctuation of the climatic conditions in rainfed regions influences spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of late sowing on wheat morphology and grain yield was studied in different 40s bread wheat at the research farm of PBG, The University of Agriculture Peshawar, Pakistan during 2013-14. Forty wheat genotypes were tested under normal and late sowing in 5 × 8 alpha lattice design with three replicates. Combined analysis of variance exhibited significant genotype by environment interactions for days to heading, flag leaf area, days to maturity, plant height, spikes m-2, grains spike-1,1000-grain weight, biomass yield, grain yield and harvest index.  Days to emergence, headings, maturity ranged from 9 to 12, 111 to 121 and 155 to 164 days under normal while under late planting it ranged from 25 to 29, 95 to107 and 137 to 143 days. Mean data under normal planting ranged between 77 to 125cm; 25 to 41cm2; 99 to 199; 10 to 13 cm 32 to 49; 52 to 88g; 8533 to 13667 kg, 1869 to 4681 kg; 21 to 35% whereas under late planting its range was 63 to 91 cm, 18 to 37 cm2, 57 to 137, 8 to 12 cm, 22 to 52, 36 to 75g, 2400 to 7933 kg, 540 to 2739 kg and 20 to 42% for plant height, flag leaf area, spikes m-2, spike length, grains spike-1, 1000-grain weight, biomass, grain yield and harvest index, respectively. Wheat genotypes planted at late condition took maximum days to emergence, while less number of days were reacquired for wheat genotypes planted at normal sowing date to get mature. Late planting negatively affected all yield contributing traits like; spikes m-2 (29%), grains spike-1 (18%) 1000-grain weight (29 %), biomass (55%) and grain yield (50 %). On the basis of the current exploration, it is obtained that genotype SRN 19111 was identified superior for 1000-grain weight, biomass yield and grain yield under normal planting, while genotype PR-107 exhibited higher grain yield under late planting. Therefore, these genotypes are recommended for further extensive testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Soil, Plant and Environment
Journal of Soil, Plant and Environment Agricultural Sciences-Environmental Sciences
自引率
0.00%
发文量
0
期刊介绍: Journal of Soil, Plant and Environment is an open peer-reviewed journal that considers articles and review articles on all aspects of agricultural sciences. Aim and Scope Journal of Soil, Plant and Environment (ISSN: 2957-9082) is an international journal dedicated to the advancements in agriculture throughout the world. The goal of this journal is to provide a platform for scientists, students, academics and engineers all over the world to promote, share, and discuss various new issues and developments in different areas of agricultural sciences. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copy. Journal of Soil, Plant and Environment (ISSN: 2957-9082) publishes original papers including but not limited to the following fields: Soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture. We are also interested in: 1) Short Reports– 2-5 pages where the paper is intended to present either an original idea with theoretical treatment or preliminary data and results; 2) Book Reviews – Comments and critiques of recently published books in agricultural sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信