Damian Borowiec, G. Yeung, A. Friday, Richard Harper, P. Garraghan
{"title":"Trimmer:经济高效的云数据中心深度学习自动调优","authors":"Damian Borowiec, G. Yeung, A. Friday, Richard Harper, P. Garraghan","doi":"10.1109/CLOUD55607.2022.00061","DOIUrl":null,"url":null,"abstract":"Cloud datacenters capable of provisioning high performance Machine Learning-as-a-Service (MLaaS) at reduced resource cost is achieved via auto-tuning: automated tensor program optimization of Deep Learning models to minimize inference latency within a hardware device. However given the extensive heterogeneity of Deep Learning models, libraries, and hardware devices, performing auto-tuning within Cloud datacenters incurs a significant time, compute resource, and energy cost of which state-of-the-art auto-tuning is not designed to mitigate. In this paper we propose Trimmer, a high performance and cost-efficient Deep Learning auto-tuning framework for Cloud datacenters. Trimmer maximizes DL model performance and tensor program cost-efficiency by preempting tensor program implementations exhibiting poor optimization improvement; and applying an ML-based filtering method to replace expensive low performing tensor programs to provide greater likelihood of selecting low latency tensor programs. Through an empirical study exploring the cost of DL model optimization techniques, our analysis indicates that 26–43% of total energy is expended on measuring tensor program implementations that do not positively contribute towards auto-tuning. Experiment results show that Trimmer achieves high auto-tuning cost-efficiency across different DL models, and reduces auto-tuning energy use by 21.8–40.9% for Cloud clusters whilst achieving DL model latency equivalent to state-of-the-art techniques.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"84 1","pages":"374-384"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimmer: Cost-Efficient Deep Learning Auto-tuning for Cloud Datacenters\",\"authors\":\"Damian Borowiec, G. Yeung, A. Friday, Richard Harper, P. Garraghan\",\"doi\":\"10.1109/CLOUD55607.2022.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud datacenters capable of provisioning high performance Machine Learning-as-a-Service (MLaaS) at reduced resource cost is achieved via auto-tuning: automated tensor program optimization of Deep Learning models to minimize inference latency within a hardware device. However given the extensive heterogeneity of Deep Learning models, libraries, and hardware devices, performing auto-tuning within Cloud datacenters incurs a significant time, compute resource, and energy cost of which state-of-the-art auto-tuning is not designed to mitigate. In this paper we propose Trimmer, a high performance and cost-efficient Deep Learning auto-tuning framework for Cloud datacenters. Trimmer maximizes DL model performance and tensor program cost-efficiency by preempting tensor program implementations exhibiting poor optimization improvement; and applying an ML-based filtering method to replace expensive low performing tensor programs to provide greater likelihood of selecting low latency tensor programs. Through an empirical study exploring the cost of DL model optimization techniques, our analysis indicates that 26–43% of total energy is expended on measuring tensor program implementations that do not positively contribute towards auto-tuning. Experiment results show that Trimmer achieves high auto-tuning cost-efficiency across different DL models, and reduces auto-tuning energy use by 21.8–40.9% for Cloud clusters whilst achieving DL model latency equivalent to state-of-the-art techniques.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"84 1\",\"pages\":\"374-384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Trimmer: Cost-Efficient Deep Learning Auto-tuning for Cloud Datacenters
Cloud datacenters capable of provisioning high performance Machine Learning-as-a-Service (MLaaS) at reduced resource cost is achieved via auto-tuning: automated tensor program optimization of Deep Learning models to minimize inference latency within a hardware device. However given the extensive heterogeneity of Deep Learning models, libraries, and hardware devices, performing auto-tuning within Cloud datacenters incurs a significant time, compute resource, and energy cost of which state-of-the-art auto-tuning is not designed to mitigate. In this paper we propose Trimmer, a high performance and cost-efficient Deep Learning auto-tuning framework for Cloud datacenters. Trimmer maximizes DL model performance and tensor program cost-efficiency by preempting tensor program implementations exhibiting poor optimization improvement; and applying an ML-based filtering method to replace expensive low performing tensor programs to provide greater likelihood of selecting low latency tensor programs. Through an empirical study exploring the cost of DL model optimization techniques, our analysis indicates that 26–43% of total energy is expended on measuring tensor program implementations that do not positively contribute towards auto-tuning. Experiment results show that Trimmer achieves high auto-tuning cost-efficiency across different DL models, and reduces auto-tuning energy use by 21.8–40.9% for Cloud clusters whilst achieving DL model latency equivalent to state-of-the-art techniques.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)