基于聚类的情感分析方法

Gang Li, Fei Liu
{"title":"基于聚类的情感分析方法","authors":"Gang Li, Fei Liu","doi":"10.1109/ISKE.2010.5680859","DOIUrl":null,"url":null,"abstract":"This paper introduces the clustering-based sentiment analysis approach which is a new approach to sentiment analysis. By applying a TF-IDF weighting method, voting mechanism and importing term scores, an acceptable and stable clustering result can be obtained. It has competitive advantages over the two existing kinds of approaches: symbolic techniques and supervised learning methods. It is a well performed, efficient, and non-human participating approach on solving sentiment analysis problems.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"91 1","pages":"331-337"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"A clustering-based approach on sentiment analysis\",\"authors\":\"Gang Li, Fei Liu\",\"doi\":\"10.1109/ISKE.2010.5680859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the clustering-based sentiment analysis approach which is a new approach to sentiment analysis. By applying a TF-IDF weighting method, voting mechanism and importing term scores, an acceptable and stable clustering result can be obtained. It has competitive advantages over the two existing kinds of approaches: symbolic techniques and supervised learning methods. It is a well performed, efficient, and non-human participating approach on solving sentiment analysis problems.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"91 1\",\"pages\":\"331-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

摘要

本文介绍了基于聚类的情感分析方法,这是一种新的情感分析方法。通过TF-IDF加权方法、投票机制和导入词得分,可以得到一个可接受的稳定聚类结果。它比现有的两种方法:符号技术和监督学习方法具有竞争优势。在解决情感分析问题上,它是一种表现良好、高效、非人类参与的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clustering-based approach on sentiment analysis
This paper introduces the clustering-based sentiment analysis approach which is a new approach to sentiment analysis. By applying a TF-IDF weighting method, voting mechanism and importing term scores, an acceptable and stable clustering result can be obtained. It has competitive advantages over the two existing kinds of approaches: symbolic techniques and supervised learning methods. It is a well performed, efficient, and non-human participating approach on solving sentiment analysis problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信