基于数据驱动核的时间序列降维概率SAX

Konstantinos Bountrogiannis, G. Tzagkarakis, P. Tsakalides
{"title":"基于数据驱动核的时间序列降维概率SAX","authors":"Konstantinos Bountrogiannis, G. Tzagkarakis, P. Tsakalides","doi":"10.23919/Eusipco47968.2020.9287311","DOIUrl":null,"url":null,"abstract":"The ever-increasing volume and complexity of time series data, emerging in various application domains, necessitate efficient dimensionality reduction for facilitating data mining tasks. Symbolic representations, among them symbolic aggregate approximation (SAX), have proven very effective in compacting the information content of time series while exploiting the wealth of search algorithms used in bioinformatics and text mining communities. However, typical SAX-based techniques rely on a Gaussian assumption for the underlying data statistics, which often deteriorates their performance in practical scenarios. To overcome this limitation, this work introduces a method that negates any assumption on the probability distribution of time series. Specifically, a data-driven kernel density estimator is first applied on the data, followed by Lloyd-Max quantization to determine the optimal horizontal segmentation breakpoints. Experimental evaluation on distinct datasets demonstrates the superiority of our method, in terms of reconstruction accuracy and tightness of lower bound, when compared against the conventional and a modified SAX method.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"59 1","pages":"2343-2347"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Data-driven Kernel-based Probabilistic SAX for Time Series Dimensionality Reduction\",\"authors\":\"Konstantinos Bountrogiannis, G. Tzagkarakis, P. Tsakalides\",\"doi\":\"10.23919/Eusipco47968.2020.9287311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-increasing volume and complexity of time series data, emerging in various application domains, necessitate efficient dimensionality reduction for facilitating data mining tasks. Symbolic representations, among them symbolic aggregate approximation (SAX), have proven very effective in compacting the information content of time series while exploiting the wealth of search algorithms used in bioinformatics and text mining communities. However, typical SAX-based techniques rely on a Gaussian assumption for the underlying data statistics, which often deteriorates their performance in practical scenarios. To overcome this limitation, this work introduces a method that negates any assumption on the probability distribution of time series. Specifically, a data-driven kernel density estimator is first applied on the data, followed by Lloyd-Max quantization to determine the optimal horizontal segmentation breakpoints. Experimental evaluation on distinct datasets demonstrates the superiority of our method, in terms of reconstruction accuracy and tightness of lower bound, when compared against the conventional and a modified SAX method.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"59 1\",\"pages\":\"2343-2347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着时间序列数据在各个应用领域的不断增长和复杂性,需要有效的降维来促进数据挖掘任务。符号表示,其中包括符号聚合近似(SAX),已被证明在压缩时间序列的信息内容方面非常有效,同时利用了生物信息学和文本挖掘社区中使用的丰富搜索算法。然而,典型的基于sax的技术依赖于底层数据统计的高斯假设,这通常会降低它们在实际场景中的性能。为了克服这一限制,本工作引入了一种方法,该方法否定了对时间序列概率分布的任何假设。具体而言,首先对数据应用数据驱动的核密度估计器,然后使用Lloyd-Max量化来确定最佳的水平分割断点。不同数据集的实验评估表明,与传统的和改进的SAX方法相比,我们的方法在重建精度和下界紧密性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven Kernel-based Probabilistic SAX for Time Series Dimensionality Reduction
The ever-increasing volume and complexity of time series data, emerging in various application domains, necessitate efficient dimensionality reduction for facilitating data mining tasks. Symbolic representations, among them symbolic aggregate approximation (SAX), have proven very effective in compacting the information content of time series while exploiting the wealth of search algorithms used in bioinformatics and text mining communities. However, typical SAX-based techniques rely on a Gaussian assumption for the underlying data statistics, which often deteriorates their performance in practical scenarios. To overcome this limitation, this work introduces a method that negates any assumption on the probability distribution of time series. Specifically, a data-driven kernel density estimator is first applied on the data, followed by Lloyd-Max quantization to determine the optimal horizontal segmentation breakpoints. Experimental evaluation on distinct datasets demonstrates the superiority of our method, in terms of reconstruction accuracy and tightness of lower bound, when compared against the conventional and a modified SAX method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信