参数配置对具有粘性阻尼的网络谐振子自由振动的影响

IF 0.5 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
Xiangdong Liu
{"title":"参数配置对具有粘性阻尼的网络谐振子自由振动的影响","authors":"Xiangdong Liu","doi":"10.12693/aphyspola.143.326","DOIUrl":null,"url":null,"abstract":"Heterogeneous oscillator networks consist of a dynamical function that describes the state of the oscillator (containing several parameters) and a topology that reflects the connections between the oscillators. Revealing the macroscopic dynamics of systems under different configurations of parameters and topology is a topic worthy of discussion and comes with great challenges. In this study, we discuss the effect of different parameter configurations on the damped free vibration of a classical spring oscillator network. On the regular network, we give the analytical expression satisfied by the free vibration of the system under over-damping and critical damping. Furthermore, we discuss the fastest and slowest exponential rates of decay of the system for different parameter conditions. In conjunction with quadratic eigenvalue theory, we extend the above analysis from regular networks to complex networks. We give a general method for calculating the eigenvalue spectrum of the system for arbitrary parameter configurations. In conjunction with the stability of the system and the rate of decay of the exponential rate, we also give numerical simulation results for the second largest and smallest real parts of the eigenvalues of the system. Finally, through the comparative analysis of the simulation results, we relax the matching relationship between the three parameters (mass, damping, and degree) to the matching between two parameters (mass and damping).","PeriodicalId":7164,"journal":{"name":"Acta Physica Polonica A","volume":"86 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Parameter Configuration on Free Vibration of Networked Harmonic Oscillators with Viscous Damping\",\"authors\":\"Xiangdong Liu\",\"doi\":\"10.12693/aphyspola.143.326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous oscillator networks consist of a dynamical function that describes the state of the oscillator (containing several parameters) and a topology that reflects the connections between the oscillators. Revealing the macroscopic dynamics of systems under different configurations of parameters and topology is a topic worthy of discussion and comes with great challenges. In this study, we discuss the effect of different parameter configurations on the damped free vibration of a classical spring oscillator network. On the regular network, we give the analytical expression satisfied by the free vibration of the system under over-damping and critical damping. Furthermore, we discuss the fastest and slowest exponential rates of decay of the system for different parameter conditions. In conjunction with quadratic eigenvalue theory, we extend the above analysis from regular networks to complex networks. We give a general method for calculating the eigenvalue spectrum of the system for arbitrary parameter configurations. In conjunction with the stability of the system and the rate of decay of the exponential rate, we also give numerical simulation results for the second largest and smallest real parts of the eigenvalues of the system. Finally, through the comparative analysis of the simulation results, we relax the matching relationship between the three parameters (mass, damping, and degree) to the matching between two parameters (mass and damping).\",\"PeriodicalId\":7164,\"journal\":{\"name\":\"Acta Physica Polonica A\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.12693/aphyspola.143.326\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.12693/aphyspola.143.326","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

异构振荡器网络由描述振荡器状态的动态函数(包含几个参数)和反映振荡器之间连接的拓扑结构组成。揭示系统在不同参数和拓扑结构下的宏观动力学是一个值得探讨的课题,同时也具有很大的挑战性。在本研究中,我们讨论了不同参数构型对经典弹簧振子网络阻尼自由振动的影响。在正则网络上,给出了系统在过阻尼和临界阻尼下的自由振动所满足的解析表达式。进一步讨论了不同参数条件下系统的最快和最慢指数衰减率。结合二次特征值理论,将上述分析从正则网络推广到复杂网络。给出了计算任意参数组态系统特征值谱的一般方法。结合系统的稳定性和指数率的衰减速率,给出了系统特征值的第二大和最小实部的数值模拟结果。最后,通过仿真结果的对比分析,将三个参数(质量、阻尼和度)之间的匹配关系放宽为两个参数(质量和阻尼)之间的匹配关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Parameter Configuration on Free Vibration of Networked Harmonic Oscillators with Viscous Damping
Heterogeneous oscillator networks consist of a dynamical function that describes the state of the oscillator (containing several parameters) and a topology that reflects the connections between the oscillators. Revealing the macroscopic dynamics of systems under different configurations of parameters and topology is a topic worthy of discussion and comes with great challenges. In this study, we discuss the effect of different parameter configurations on the damped free vibration of a classical spring oscillator network. On the regular network, we give the analytical expression satisfied by the free vibration of the system under over-damping and critical damping. Furthermore, we discuss the fastest and slowest exponential rates of decay of the system for different parameter conditions. In conjunction with quadratic eigenvalue theory, we extend the above analysis from regular networks to complex networks. We give a general method for calculating the eigenvalue spectrum of the system for arbitrary parameter configurations. In conjunction with the stability of the system and the rate of decay of the exponential rate, we also give numerical simulation results for the second largest and smallest real parts of the eigenvalues of the system. Finally, through the comparative analysis of the simulation results, we relax the matching relationship between the three parameters (mass, damping, and degree) to the matching between two parameters (mass and damping).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica A
Acta Physica Polonica A 物理-物理:综合
CiteScore
1.50
自引率
0.00%
发文量
141
审稿时长
6 months
期刊介绍: Contributions which report original research results and reviews in the fields of General Physics, Atomic and Molecular Physics, Optics and Quantum Optics, Quantum Information, Biophysics, Condensed Matter, and Applied Physics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信