孔隙体积变化率的新认识——以泡沫钛为例

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiao Jian , Liu Jinping , Wang Zhixiang , Qiu Guibao
{"title":"孔隙体积变化率的新认识——以泡沫钛为例","authors":"Xiao Jian ,&nbsp;Liu Jinping ,&nbsp;Wang Zhixiang ,&nbsp;Qiu Guibao","doi":"10.1016/S1875-5372(18)30234-0","DOIUrl":null,"url":null,"abstract":"<div><p>The space holder technique is widely used to fabricate metal foams, especially titanium foam. However, how to obtain the desired porosities is a big challenge for this technique, because they are not always equal to the expected ones. The results of the previous study (i.e., <em>P</em> = <em>ax</em> + <em>b</em>, where <em>a</em> = 1/(1 + δ), <em>b</em> = δ/(1 + δ)) give a very interesting conclusion that is the change rate of pore volume (δ) is an indefinite mathematical constant. Based on the research work, we obtains a new result by establishing a mathematical model, which can be expressed as equation δ = ϕ − 1. Here, ϕ is the length index product of the ratio between the actual length and the designed length of the sintered metal foam. It reveals that the length index product (ϕ) is also an indefinite mathematical constant and we can measure its value. Therefore, solving δ means both <em>a</em> and <em>b</em> are solved, so the porosity (<em>P</em>) of titanium foam can be predicted by the equation <em>P</em> = <em>ax</em> + <em>b</em>, depending on the spacer content (<em>x</em>). This indicates that in the absence of porosity measurements, the macroscopic dimensions of the sintered metal foam can be measured to obtain a controlling equation for porosity.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 11","pages":"Pages 3289-3294"},"PeriodicalIF":0.6000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30234-0","citationCount":"3","resultStr":"{\"title\":\"New Insights into Change Rate of Pore Volume – Taking Titanium Foam for Example\",\"authors\":\"Xiao Jian ,&nbsp;Liu Jinping ,&nbsp;Wang Zhixiang ,&nbsp;Qiu Guibao\",\"doi\":\"10.1016/S1875-5372(18)30234-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The space holder technique is widely used to fabricate metal foams, especially titanium foam. However, how to obtain the desired porosities is a big challenge for this technique, because they are not always equal to the expected ones. The results of the previous study (i.e., <em>P</em> = <em>ax</em> + <em>b</em>, where <em>a</em> = 1/(1 + δ), <em>b</em> = δ/(1 + δ)) give a very interesting conclusion that is the change rate of pore volume (δ) is an indefinite mathematical constant. Based on the research work, we obtains a new result by establishing a mathematical model, which can be expressed as equation δ = ϕ − 1. Here, ϕ is the length index product of the ratio between the actual length and the designed length of the sintered metal foam. It reveals that the length index product (ϕ) is also an indefinite mathematical constant and we can measure its value. Therefore, solving δ means both <em>a</em> and <em>b</em> are solved, so the porosity (<em>P</em>) of titanium foam can be predicted by the equation <em>P</em> = <em>ax</em> + <em>b</em>, depending on the spacer content (<em>x</em>). This indicates that in the absence of porosity measurements, the macroscopic dimensions of the sintered metal foam can be measured to obtain a controlling equation for porosity.</p></div>\",\"PeriodicalId\":21056,\"journal\":{\"name\":\"稀有金属材料与工程\",\"volume\":\"47 11\",\"pages\":\"Pages 3289-3294\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30234-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"稀有金属材料与工程\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875537218302340\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218302340","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

空间支架技术广泛应用于金属泡沫材料,尤其是钛泡沫材料的制备。然而,如何获得所需的孔隙率是该技术的一大挑战,因为它们并不总是等于预期的孔隙率。前人的研究结果(即P = ax + b,其中a = 1/(1 + δ), b = δ/(1 + δ))给出了一个非常有趣的结论,即孔隙体积变化率(δ)是一个不定的数学常数。在研究工作的基础上,我们建立了一个数学模型,得到了一个新的结果,该模型可以表示为公式δ = ϕ−1。其中φ为烧结金属泡沫的实际长度与设计长度之比的长度指标积。它揭示了长度指数积(φ)也是一个不定的数学常数,我们可以测量它的值。因此,解出δ意味着解出了a和b,因此泡沫钛的孔隙率(P)可以用方程P = ax + b来预测,这取决于间隔剂的含量(x)。这表明,在不进行孔隙率测量的情况下,可以测量烧结泡沫金属的宏观尺寸,从而得到孔隙率的控制方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Insights into Change Rate of Pore Volume – Taking Titanium Foam for Example

The space holder technique is widely used to fabricate metal foams, especially titanium foam. However, how to obtain the desired porosities is a big challenge for this technique, because they are not always equal to the expected ones. The results of the previous study (i.e., P = ax + b, where a = 1/(1 + δ), b = δ/(1 + δ)) give a very interesting conclusion that is the change rate of pore volume (δ) is an indefinite mathematical constant. Based on the research work, we obtains a new result by establishing a mathematical model, which can be expressed as equation δ = ϕ − 1. Here, ϕ is the length index product of the ratio between the actual length and the designed length of the sintered metal foam. It reveals that the length index product (ϕ) is also an indefinite mathematical constant and we can measure its value. Therefore, solving δ means both a and b are solved, so the porosity (P) of titanium foam can be predicted by the equation P = ax + b, depending on the spacer content (x). This indicates that in the absence of porosity measurements, the macroscopic dimensions of the sintered metal foam can be measured to obtain a controlling equation for porosity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
稀有金属材料与工程
稀有金属材料与工程 工程技术-材料科学:综合
CiteScore
1.30
自引率
57.10%
发文量
17973
审稿时长
4.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信