基于递归神经网络和时间反向传播的语音特征情感识别硬件架构

Joshua Gunawan, Teresia R. S. Putri, Yashael F. Arthanto, T. Adiono
{"title":"基于递归神经网络和时间反向传播的语音特征情感识别硬件架构","authors":"Joshua Gunawan, Teresia R. S. Putri, Yashael F. Arthanto, T. Adiono","doi":"10.1109/ISPACS48206.2019.8986342","DOIUrl":null,"url":null,"abstract":"Emotion recognition from speech feature is one of the application where the system needs temporal information in order to produce a correct prediction. On the other hand, recurrent neural network has the advantage of retaining temporal information. This paper proposed a hardware architecture design for emotion recognition system using LSTM (Long Short Term Memory) and BPTT (Backpropagation Through Time). For this application, the proposed architecture consists of a two-layer stacked LSTM with 53 cells on the first layer and 8 cells on the second layer. The architecture is implemented and verified using Verilog language and FPGA.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"12 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Architecture of Emotion Recognition from Speech Features using Recurrent Neural Network and Backpropagation Through Time\",\"authors\":\"Joshua Gunawan, Teresia R. S. Putri, Yashael F. Arthanto, T. Adiono\",\"doi\":\"10.1109/ISPACS48206.2019.8986342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition from speech feature is one of the application where the system needs temporal information in order to produce a correct prediction. On the other hand, recurrent neural network has the advantage of retaining temporal information. This paper proposed a hardware architecture design for emotion recognition system using LSTM (Long Short Term Memory) and BPTT (Backpropagation Through Time). For this application, the proposed architecture consists of a two-layer stacked LSTM with 53 cells on the first layer and 8 cells on the second layer. The architecture is implemented and verified using Verilog language and FPGA.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"12 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于语音特征的情感识别是系统需要时间信息才能做出正确预测的应用之一。另一方面,递归神经网络具有保留时间信息的优点。提出了一种基于LSTM(长短期记忆)和BPTT(时间反向传播)的情感识别系统的硬件架构设计。对于这个应用程序,提出的体系结构包括一个两层堆叠的LSTM,第一层有53个单元,第二层有8个单元。采用Verilog语言和FPGA对该体系结构进行了实现和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware Architecture of Emotion Recognition from Speech Features using Recurrent Neural Network and Backpropagation Through Time
Emotion recognition from speech feature is one of the application where the system needs temporal information in order to produce a correct prediction. On the other hand, recurrent neural network has the advantage of retaining temporal information. This paper proposed a hardware architecture design for emotion recognition system using LSTM (Long Short Term Memory) and BPTT (Backpropagation Through Time). For this application, the proposed architecture consists of a two-layer stacked LSTM with 53 cells on the first layer and 8 cells on the second layer. The architecture is implemented and verified using Verilog language and FPGA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信