Sijia Yang, Jiuchun Jiang, Caiping Zhang, Weige Zhang, Yang Gao
{"title":"锂离子电池全寿命周期充电状态校正与在线容量估计","authors":"Sijia Yang, Jiuchun Jiang, Caiping Zhang, Weige Zhang, Yang Gao","doi":"10.12783/dteees/iceee2019/31819","DOIUrl":null,"url":null,"abstract":"In this paper, a novel online state-of-charge (SOC) correction approach in terms of utilizing only the Ampere-hour (Ah) counting is proposed. The method include updating the battery maximum capacity and a SOC modification and is verified on both fresh and degradation batteries. The algorithm presents reasonable results and is able to modify the SOC to an accuracy within ±3% for full life cycle, which has potential for real application in regular maintenance of hybrid electric vehicles.","PeriodicalId":11324,"journal":{"name":"DEStech Transactions on Environment, Energy and Earth Sciences","volume":"425 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel State-of-charge Correction and Online Capacity Estimation for Lithium-ion Batteries in Full Life Cycle\",\"authors\":\"Sijia Yang, Jiuchun Jiang, Caiping Zhang, Weige Zhang, Yang Gao\",\"doi\":\"10.12783/dteees/iceee2019/31819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel online state-of-charge (SOC) correction approach in terms of utilizing only the Ampere-hour (Ah) counting is proposed. The method include updating the battery maximum capacity and a SOC modification and is verified on both fresh and degradation batteries. The algorithm presents reasonable results and is able to modify the SOC to an accuracy within ±3% for full life cycle, which has potential for real application in regular maintenance of hybrid electric vehicles.\",\"PeriodicalId\":11324,\"journal\":{\"name\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"volume\":\"425 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DEStech Transactions on Environment, Energy and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/dteees/iceee2019/31819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DEStech Transactions on Environment, Energy and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/dteees/iceee2019/31819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel State-of-charge Correction and Online Capacity Estimation for Lithium-ion Batteries in Full Life Cycle
In this paper, a novel online state-of-charge (SOC) correction approach in terms of utilizing only the Ampere-hour (Ah) counting is proposed. The method include updating the battery maximum capacity and a SOC modification and is verified on both fresh and degradation batteries. The algorithm presents reasonable results and is able to modify the SOC to an accuracy within ±3% for full life cycle, which has potential for real application in regular maintenance of hybrid electric vehicles.