具有次线性更新时间的全动态最大独立集

Sepehr Assadi, Krzysztof Onak, B. Schieber, Shay Solomon
{"title":"具有次线性更新时间的全动态最大独立集","authors":"Sepehr Assadi, Krzysztof Onak, B. Schieber, Shay Solomon","doi":"10.1145/3188745.3188922","DOIUrl":null,"url":null,"abstract":"A maximal independent set (MIS) can be maintained in an evolving m-edge graph by simply recomputing it from scratch in O(m) time after each update. But can it be maintained in time sublinear in m in fully dynamic graphs? We answer this fundamental open question in the affirmative. We present a deterministic algorithm with amortized update time O(min{Δ,m3/4}), where Δ is a fixed bound on the maximum degree in the graph and m is the (dynamically changing) number of edges. We further present a distributed implementation of our algorithm with O(min{Δ,m3/4}) amortized message complexity, and O(1) amortized round complexity and adjustment complexity (the number of vertices that change their output after each update). This strengthens a similar result by Censor-Hillel, Haramaty, and Karnin (PODC’16) that required an assumption of a non-adaptive oblivious adversary.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Fully dynamic maximal independent set with sublinear update time\",\"authors\":\"Sepehr Assadi, Krzysztof Onak, B. Schieber, Shay Solomon\",\"doi\":\"10.1145/3188745.3188922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximal independent set (MIS) can be maintained in an evolving m-edge graph by simply recomputing it from scratch in O(m) time after each update. But can it be maintained in time sublinear in m in fully dynamic graphs? We answer this fundamental open question in the affirmative. We present a deterministic algorithm with amortized update time O(min{Δ,m3/4}), where Δ is a fixed bound on the maximum degree in the graph and m is the (dynamically changing) number of edges. We further present a distributed implementation of our algorithm with O(min{Δ,m3/4}) amortized message complexity, and O(1) amortized round complexity and adjustment complexity (the number of vertices that change their output after each update). This strengthens a similar result by Censor-Hillel, Haramaty, and Karnin (PODC’16) that required an assumption of a non-adaptive oblivious adversary.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

通过在每次更新后的O(m)时间内重新计算最大独立集(MIS),可以在不断发展的m边图中维护最大独立集。但是在全动态图中,它能在时间上保持亚线性吗?我们肯定地回答这个基本的开放性问题。我们提出了一个平摊更新时间为O(min{Δ,m3/4})的确定性算法,其中Δ是图中最大度的固定界,m是(动态变化的)边数。我们进一步提出了我们算法的分布式实现,它具有O(min{Δ,m3/4})平摊消息复杂度,以及O(1)平摊轮复杂度和调整复杂度(每次更新后改变其输出的顶点数量)。这加强了cenor - hillel, Haramaty和Karnin (PODC ' 16)的类似结果,该结果需要假设一个非适应性遗忘对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully dynamic maximal independent set with sublinear update time
A maximal independent set (MIS) can be maintained in an evolving m-edge graph by simply recomputing it from scratch in O(m) time after each update. But can it be maintained in time sublinear in m in fully dynamic graphs? We answer this fundamental open question in the affirmative. We present a deterministic algorithm with amortized update time O(min{Δ,m3/4}), where Δ is a fixed bound on the maximum degree in the graph and m is the (dynamically changing) number of edges. We further present a distributed implementation of our algorithm with O(min{Δ,m3/4}) amortized message complexity, and O(1) amortized round complexity and adjustment complexity (the number of vertices that change their output after each update). This strengthens a similar result by Censor-Hillel, Haramaty, and Karnin (PODC’16) that required an assumption of a non-adaptive oblivious adversary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信