M. Yamaguchi, Hidetoshi Suzuki, Y. Ohshita, N. Kojima, T. Takamoto
{"title":"创新太阳能电池项目下聚光器多结太阳能电池及材料的最新研发课题","authors":"M. Yamaguchi, Hidetoshi Suzuki, Y. Ohshita, N. Kojima, T. Takamoto","doi":"10.1109/PVSC.2010.5614172","DOIUrl":null,"url":null,"abstract":"III–V compound multi-junction solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior radiation-resistance. We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program started since FY2008. This paper presents our new achievements in super high-efficiency multi-junction and concentrator solar cells. We have obtained promising results: 1) 35.8% efficiency InGaP/GaAs/InGaAs 3-junction cells, 2) high quality (In)GaAsN material with higher mobility by chemical beam epitaxy compared to those grown by the other growth methods.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"8 1","pages":"001237-001242"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recent R&D topics on concentrator multi-junction solar cells and materials under innovative solar cells's project\",\"authors\":\"M. Yamaguchi, Hidetoshi Suzuki, Y. Ohshita, N. Kojima, T. Takamoto\",\"doi\":\"10.1109/PVSC.2010.5614172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"III–V compound multi-junction solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior radiation-resistance. We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program started since FY2008. This paper presents our new achievements in super high-efficiency multi-junction and concentrator solar cells. We have obtained promising results: 1) 35.8% efficiency InGaP/GaAs/InGaAs 3-junction cells, 2) high quality (In)GaAsN material with higher mobility by chemical beam epitaxy compared to those grown by the other growth methods.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"8 1\",\"pages\":\"001237-001242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent R&D topics on concentrator multi-junction solar cells and materials under innovative solar cells's project
III–V compound multi-junction solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior radiation-resistance. We have been studying concentrator multi-junction solar cells under Japanese Innovative Photovoltaic R&D program started since FY2008. This paper presents our new achievements in super high-efficiency multi-junction and concentrator solar cells. We have obtained promising results: 1) 35.8% efficiency InGaP/GaAs/InGaAs 3-junction cells, 2) high quality (In)GaAsN material with higher mobility by chemical beam epitaxy compared to those grown by the other growth methods.