一类半线性离散系统最大输出容许集的精确确定

IF 1.1 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS
A. Bhih, Y. Benfatah, M. Rachik
{"title":"一类半线性离散系统最大输出容许集的精确确定","authors":"A. Bhih, Y. Benfatah, M. Rachik","doi":"10.24425/ACS.2020.134676","DOIUrl":null,"url":null,"abstract":"and the corresponding output signal y ( i ) = Cx ( i i 0 , where A is a n (cid:2) n matrix, C is a p (cid:2) n matrix and f is a nonlinear function. An initial state x ( 0 ) is output admissible with respect to A , f , C and a constraint set Ω (cid:26) R p , if the output signal ( y ( i )) i associated to our system satisfies the condition y ( i ) 2 Ω , for every integer i 0 . The set of all possible such initial conditions is the maximal output admissible set (cid:0) ( Ω ) . In this paper we will define a new set that characterizes the maximal output set in various systems (controlled and uncontrolled systems). Therefore, we propose an algorithmic approach that permits to verify if such set is finitely determined or not. The case of discrete delayed systems is taken into consideration as well. To illustrate our work, we give various numerical simulations.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"36 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exact determinantions of maximal output admissible set for a class of semilinear discrete systems\",\"authors\":\"A. Bhih, Y. Benfatah, M. Rachik\",\"doi\":\"10.24425/ACS.2020.134676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"and the corresponding output signal y ( i ) = Cx ( i i 0 , where A is a n (cid:2) n matrix, C is a p (cid:2) n matrix and f is a nonlinear function. An initial state x ( 0 ) is output admissible with respect to A , f , C and a constraint set Ω (cid:26) R p , if the output signal ( y ( i )) i associated to our system satisfies the condition y ( i ) 2 Ω , for every integer i 0 . The set of all possible such initial conditions is the maximal output admissible set (cid:0) ( Ω ) . In this paper we will define a new set that characterizes the maximal output set in various systems (controlled and uncontrolled systems). Therefore, we propose an algorithmic approach that permits to verify if such set is finitely determined or not. The case of discrete delayed systems is taken into consideration as well. To illustrate our work, we give various numerical simulations.\",\"PeriodicalId\":48654,\"journal\":{\"name\":\"Archives of Control Sciences\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Control Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.24425/ACS.2020.134676\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/ACS.2020.134676","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

对应的输出信号y (i) = Cx (i i) 0,其中A为n (cid:2) n矩阵,C为p (cid:2) n矩阵,f为非线性函数。对于每个整数i 0,如果与系统相关的输出信号(y (i)) i满足条件y (i) 2 Ω,则对于A, f, C和约束集Ω (cid:26) R p,一个初始状态x(0)是可输出的。所有可能的初始条件的集合就是最大输出允许集(cid:0) (Ω)。在本文中,我们将定义一个新的集来表征各种系统(受控和非受控系统)的最大输出集。因此,我们提出了一种算法方法,允许验证该集合是否有限确定。同时也考虑了离散时滞系统的情况。为了说明我们的工作,我们给出了各种数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact determinantions of maximal output admissible set for a class of semilinear discrete systems
and the corresponding output signal y ( i ) = Cx ( i i 0 , where A is a n (cid:2) n matrix, C is a p (cid:2) n matrix and f is a nonlinear function. An initial state x ( 0 ) is output admissible with respect to A , f , C and a constraint set Ω (cid:26) R p , if the output signal ( y ( i )) i associated to our system satisfies the condition y ( i ) 2 Ω , for every integer i 0 . The set of all possible such initial conditions is the maximal output admissible set (cid:0) ( Ω ) . In this paper we will define a new set that characterizes the maximal output set in various systems (controlled and uncontrolled systems). Therefore, we propose an algorithmic approach that permits to verify if such set is finitely determined or not. The case of discrete delayed systems is taken into consideration as well. To illustrate our work, we give various numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Control Sciences
Archives of Control Sciences Mathematics-Modeling and Simulation
CiteScore
2.40
自引率
33.30%
发文量
0
审稿时长
14 weeks
期刊介绍: Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信