多连通域中单位调和映射的重正化能量

Rémy Rodiac, Pa'ul Ubill'us
{"title":"多连通域中单位调和映射的重正化能量","authors":"Rémy Rodiac, Pa'ul Ubill'us","doi":"10.3233/ASY-211712","DOIUrl":null,"url":null,"abstract":"In this article we derive the expression of \\textit{renormalized energies} for unit-valued harmonic maps defined on a smooth bounded domain in \\(\\mathbb{R}^2\\) whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel-Brezis-Helein in order to describe the position of limiting Ginzburg-Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Renormalized energies for unit-valued harmonic maps in multiply connected domains\",\"authors\":\"Rémy Rodiac, Pa'ul Ubill'us\",\"doi\":\"10.3233/ASY-211712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we derive the expression of \\\\textit{renormalized energies} for unit-valued harmonic maps defined on a smooth bounded domain in \\\\(\\\\mathbb{R}^2\\\\) whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel-Brezis-Helein in order to describe the position of limiting Ginzburg-Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.\",\"PeriodicalId\":8445,\"journal\":{\"name\":\"arXiv: Analysis of PDEs\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Analysis of PDEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-211712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-211712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文导出了定义在\(\mathbb{R}^2\)光滑有界域上的单位值调和映射的\textit{重整化能量}表达式,该映射的边界有几个连通分量。为了描述单连通域中极限金兹堡-朗道涡的位置,Bethuel-Brezis-Helein引入了重正化能量的概念。我们在这里展示,域的非平凡拓扑如何改变重整化能量的表达式。我们也讨论了狄利克雷边界条件和诺伊曼边界条件的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Renormalized energies for unit-valued harmonic maps in multiply connected domains
In this article we derive the expression of \textit{renormalized energies} for unit-valued harmonic maps defined on a smooth bounded domain in \(\mathbb{R}^2\) whose boundary has several connected components. The notion of renormalized energies was introduced by Bethuel-Brezis-Helein in order to describe the position of limiting Ginzburg-Landau vortices in simply connected domains. We show here, how a non-trivial topology of the domain modifies the expression of the renormalized energies. We treat the case of Dirichlet boundary conditions and Neumann boundary conditions as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信