{"title":"计算Gn,1/2 $$ {G}_{n,1/2} $$在度同余条件下的分区","authors":"P. Balister, Emil Powierski, A. Scott, Jane Tan","doi":"10.1002/rsa.21115","DOIUrl":null,"url":null,"abstract":"For G=Gn,1/2$$ G={G}_{n,1/2} $$ , the Erdős–Renyi random graph, let Xn$$ {X}_n $$ be the random variable representing the number of distinct partitions of V(G)$$ V(G) $$ into sets A1,…,Aq$$ {A}_1,\\dots, {A}_q $$ so that the degree of each vertex in G[Ai]$$ G\\left[{A}_i\\right] $$ is divisible by q$$ q $$ for all i∈[q]$$ i\\in \\left[q\\right] $$ . We prove that if q≥3$$ q\\ge 3 $$ is odd then Xn→dPo(1/q!)$$ {X}_n\\overset{d}{\\to \\limits}\\mathrm{Po}\\left(1/q!\\right) $$ , and if q≥4$$ q\\ge 4 $$ is even then Xn→dPo(2q/q!)$$ {X}_n\\overset{d}{\\to \\limits}\\mathrm{Po}\\left({2}^q/q!\\right) $$ . More generally, we show that the distribution is still asymptotically Poisson when we require all degrees in G[Ai]$$ G\\left[{A}_i\\right] $$ to be congruent to xi$$ {x}_i $$ modulo q$$ q $$ for each i∈[q]$$ i\\in \\left[q\\right] $$ , where the residues xi$$ {x}_i $$ may be chosen freely. For q=2$$ q=2 $$ , the distribution is not asymptotically Poisson, but it can be determined explicitly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Counting partitions of Gn,1/2$$ {G}_{n,1/2} $$ with degree congruence conditions\",\"authors\":\"P. Balister, Emil Powierski, A. Scott, Jane Tan\",\"doi\":\"10.1002/rsa.21115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For G=Gn,1/2$$ G={G}_{n,1/2} $$ , the Erdős–Renyi random graph, let Xn$$ {X}_n $$ be the random variable representing the number of distinct partitions of V(G)$$ V(G) $$ into sets A1,…,Aq$$ {A}_1,\\\\dots, {A}_q $$ so that the degree of each vertex in G[Ai]$$ G\\\\left[{A}_i\\\\right] $$ is divisible by q$$ q $$ for all i∈[q]$$ i\\\\in \\\\left[q\\\\right] $$ . We prove that if q≥3$$ q\\\\ge 3 $$ is odd then Xn→dPo(1/q!)$$ {X}_n\\\\overset{d}{\\\\to \\\\limits}\\\\mathrm{Po}\\\\left(1/q!\\\\right) $$ , and if q≥4$$ q\\\\ge 4 $$ is even then Xn→dPo(2q/q!)$$ {X}_n\\\\overset{d}{\\\\to \\\\limits}\\\\mathrm{Po}\\\\left({2}^q/q!\\\\right) $$ . More generally, we show that the distribution is still asymptotically Poisson when we require all degrees in G[Ai]$$ G\\\\left[{A}_i\\\\right] $$ to be congruent to xi$$ {x}_i $$ modulo q$$ q $$ for each i∈[q]$$ i\\\\in \\\\left[q\\\\right] $$ , where the residues xi$$ {x}_i $$ may be chosen freely. For q=2$$ q=2 $$ , the distribution is not asymptotically Poisson, but it can be determined explicitly.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Counting partitions of Gn,1/2$$ {G}_{n,1/2} $$ with degree congruence conditions
For G=Gn,1/2$$ G={G}_{n,1/2} $$ , the Erdős–Renyi random graph, let Xn$$ {X}_n $$ be the random variable representing the number of distinct partitions of V(G)$$ V(G) $$ into sets A1,…,Aq$$ {A}_1,\dots, {A}_q $$ so that the degree of each vertex in G[Ai]$$ G\left[{A}_i\right] $$ is divisible by q$$ q $$ for all i∈[q]$$ i\in \left[q\right] $$ . We prove that if q≥3$$ q\ge 3 $$ is odd then Xn→dPo(1/q!)$$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left(1/q!\right) $$ , and if q≥4$$ q\ge 4 $$ is even then Xn→dPo(2q/q!)$$ {X}_n\overset{d}{\to \limits}\mathrm{Po}\left({2}^q/q!\right) $$ . More generally, we show that the distribution is still asymptotically Poisson when we require all degrees in G[Ai]$$ G\left[{A}_i\right] $$ to be congruent to xi$$ {x}_i $$ modulo q$$ q $$ for each i∈[q]$$ i\in \left[q\right] $$ , where the residues xi$$ {x}_i $$ may be chosen freely. For q=2$$ q=2 $$ , the distribution is not asymptotically Poisson, but it can be determined explicitly.