智能配电规划中基于模糊聚类和支持向量机的光伏发电短期预测

Li Shan, Xin Pei-zhe, Z. Guohui
{"title":"智能配电规划中基于模糊聚类和支持向量机的光伏发电短期预测","authors":"Li Shan, Xin Pei-zhe, Z. Guohui","doi":"10.1109/IAEAC.2018.8577853","DOIUrl":null,"url":null,"abstract":"This paper presents a photovoltaic (PV) short-term power prediction method based on fuzzy clustering and support vector machines. Using the meteorological information to establish a fuzzy similarity matrix, a set of historical day sample sets most similar to the forecast day is obtained through classification recognition, and the meteorological factors of the prediction date are used as input samples of the prediction model. Thus, the PV power generation prediction model was established. According to the actual measure data, the proposed model is verified. The results show that the method has high prediction accuracy and has better reference value for PV power generation prediction.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"101 1","pages":"643-647"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term Forecasting of PV Power Based on the Fuzzy Clustering Algorithm and Support Vector Machine in Smart Distribution Planning\",\"authors\":\"Li Shan, Xin Pei-zhe, Z. Guohui\",\"doi\":\"10.1109/IAEAC.2018.8577853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a photovoltaic (PV) short-term power prediction method based on fuzzy clustering and support vector machines. Using the meteorological information to establish a fuzzy similarity matrix, a set of historical day sample sets most similar to the forecast day is obtained through classification recognition, and the meteorological factors of the prediction date are used as input samples of the prediction model. Thus, the PV power generation prediction model was established. According to the actual measure data, the proposed model is verified. The results show that the method has high prediction accuracy and has better reference value for PV power generation prediction.\",\"PeriodicalId\":6573,\"journal\":{\"name\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"101 1\",\"pages\":\"643-647\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2018.8577853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于模糊聚类和支持向量机的光伏发电短期功率预测方法。利用气象信息建立模糊相似矩阵,通过分类识别得到一组与预报日最相似的历史日样本集,并将预报日的气象因子作为预测模型的输入样本。据此,建立了光伏发电预测模型。根据实际测量数据,对所提模型进行了验证。结果表明,该方法具有较高的预测精度,对光伏发电预测具有较好的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term Forecasting of PV Power Based on the Fuzzy Clustering Algorithm and Support Vector Machine in Smart Distribution Planning
This paper presents a photovoltaic (PV) short-term power prediction method based on fuzzy clustering and support vector machines. Using the meteorological information to establish a fuzzy similarity matrix, a set of historical day sample sets most similar to the forecast day is obtained through classification recognition, and the meteorological factors of the prediction date are used as input samples of the prediction model. Thus, the PV power generation prediction model was established. According to the actual measure data, the proposed model is verified. The results show that the method has high prediction accuracy and has better reference value for PV power generation prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信