{"title":"稳定匹配的最大数目的简单指数上界","authors":"Anna R. Karlin, S. Gharan, Robbie Weber","doi":"10.1145/3188745.3188848","DOIUrl":null,"url":null,"abstract":"Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n), the maximum number of stable matchings that a stable matching instance with n men and n women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n) as n→∞, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n, and the best upper bound was 2nlogn− O(n). In this paper, we show that for all n, f(n) ≤ cn for some universal constant c. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call “mixing”. The latter might be of independent interest.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A simply exponential upper bound on the maximum number of stable matchings\",\"authors\":\"Anna R. Karlin, S. Gharan, Robbie Weber\",\"doi\":\"10.1145/3188745.3188848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n), the maximum number of stable matchings that a stable matching instance with n men and n women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n) as n→∞, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n, and the best upper bound was 2nlogn− O(n). In this paper, we show that for all n, f(n) ≤ cn for some universal constant c. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call “mixing”. The latter might be of independent interest.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simply exponential upper bound on the maximum number of stable matchings
Stable matching is a classical combinatorial problem that has been the subject of intense theoretical and empirical study since its introduction in 1962 in a seminal paper by Gale and Shapley. In this paper, we provide a new upper bound on f(n), the maximum number of stable matchings that a stable matching instance with n men and n women can have. It has been a long-standing open problem to understand the asymptotic behavior of f(n) as n→∞, first posed by Donald Knuth in the 1970s. Until now the best lower bound was approximately 2.28n, and the best upper bound was 2nlogn− O(n). In this paper, we show that for all n, f(n) ≤ cn for some universal constant c. This matches the lower bound up to the base of the exponent. Our proof is based on a reduction to counting the number of downsets of a family of posets that we call “mixing”. The latter might be of independent interest.