R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini
{"title":"基于先进偏差补偿最小二乘的SCC热模型辨识","authors":"R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini","doi":"10.7873/DATE.2013.060","DOIUrl":null,"url":null,"abstract":"Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"80 1","pages":"230-235"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"SCC thermal model identification via advanced bias-compensated least-squares\",\"authors\":\"R. Diversi, Andrea Bartolini, A. Tilli, Francesco Beneventi, L. Benini\",\"doi\":\"10.7873/DATE.2013.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"80 1\",\"pages\":\"230-235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SCC thermal model identification via advanced bias-compensated least-squares
Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel's Single-chip-Cloud-Computer (SCC) many-core prototype.