基于半监督学习的重复图像表示

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Ming Chen, Jinghua Yan, Tieliang Gao, Yuhua Li, Huan Ma
{"title":"基于半监督学习的重复图像表示","authors":"Ming Chen, Jinghua Yan, Tieliang Gao, Yuhua Li, Huan Ma","doi":"10.4018/ijghpc.301578","DOIUrl":null,"url":null,"abstract":"For duplicate image detection, the more advanced large-scale image retrieval systems in recent years have mainly used the Bag-of-Feature ( BoF ) model to meet the real-time. However, due to the lack of semantic information in the training process of the visual dictionary, BoF model cannot guarantee semantic similarity. Therefore, this paper proposes a duplicate image representation algorithm based on semi-supervised learning. This algorithm first generates semi-supervised hashes, and then maps the image local descriptors to binary codes based on semi-supervised learning. Finally, an image is represented by a frequency histogram of binary codes. Since the semantic information can be effectively introduced through the construction of the marker matrix and the classification matrix during the training process, semi-supervised learning can not only guarantee the metric similarity of the local descriptors, but also guarantee the semantic similarity. And the experimental results also show this algorithm has a better retrieval effect compared with traditional algorithms.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"66 1","pages":"1-13"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Duplicate Image Representation Based on Semi-Supervised Learning\",\"authors\":\"Ming Chen, Jinghua Yan, Tieliang Gao, Yuhua Li, Huan Ma\",\"doi\":\"10.4018/ijghpc.301578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For duplicate image detection, the more advanced large-scale image retrieval systems in recent years have mainly used the Bag-of-Feature ( BoF ) model to meet the real-time. However, due to the lack of semantic information in the training process of the visual dictionary, BoF model cannot guarantee semantic similarity. Therefore, this paper proposes a duplicate image representation algorithm based on semi-supervised learning. This algorithm first generates semi-supervised hashes, and then maps the image local descriptors to binary codes based on semi-supervised learning. Finally, an image is represented by a frequency histogram of binary codes. Since the semantic information can be effectively introduced through the construction of the marker matrix and the classification matrix during the training process, semi-supervised learning can not only guarantee the metric similarity of the local descriptors, but also guarantee the semantic similarity. And the experimental results also show this algorithm has a better retrieval effect compared with traditional algorithms.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"66 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.301578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

对于重复图像检测,近年来较为先进的大规模图像检索系统主要采用特征袋(Bag-of-Feature, BoF)模型来满足实时性要求。然而,由于视觉词典在训练过程中缺乏语义信息,BoF模型无法保证语义相似度。因此,本文提出了一种基于半监督学习的重复图像表示算法。该算法首先生成半监督哈希,然后基于半监督学习将图像局部描述符映射为二进制码。最后,用二进制码的频率直方图表示图像。由于在训练过程中可以通过构建标记矩阵和分类矩阵有效地引入语义信息,因此半监督学习既可以保证局部描述子的度量相似度,又可以保证语义相似度。实验结果也表明,与传统算法相比,该算法具有更好的检索效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duplicate Image Representation Based on Semi-Supervised Learning
For duplicate image detection, the more advanced large-scale image retrieval systems in recent years have mainly used the Bag-of-Feature ( BoF ) model to meet the real-time. However, due to the lack of semantic information in the training process of the visual dictionary, BoF model cannot guarantee semantic similarity. Therefore, this paper proposes a duplicate image representation algorithm based on semi-supervised learning. This algorithm first generates semi-supervised hashes, and then maps the image local descriptors to binary codes based on semi-supervised learning. Finally, an image is represented by a frequency histogram of binary codes. Since the semantic information can be effectively introduced through the construction of the marker matrix and the classification matrix during the training process, semi-supervised learning can not only guarantee the metric similarity of the local descriptors, but also guarantee the semantic similarity. And the experimental results also show this algorithm has a better retrieval effect compared with traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信