Xinyue Zhu, Lisen Chen, Tao Liu, Shengui He, Xin Zhao, Yinong Tian, Yanjun Fang, Jingnan Cui
{"title":"基于荧光探针技术检测18种二元和24种三元农药组合对羧酸酯酶的联合毒性","authors":"Xinyue Zhu, Lisen Chen, Tao Liu, Shengui He, Xin Zhao, Yinong Tian, Yanjun Fang, Jingnan Cui","doi":"10.1080/03601234.2022.2049158","DOIUrl":null,"url":null,"abstract":"Abstract A rapid test method for the determination of pesticide toxicity was established by using carboxylesterase (CES) and fluorescence probe ACE-NH based on the principle of enzyme inhibition, and this method was applied to detect the combined toxicity of 18 binary and 24 ternary pesticide combinations commonly used for fruits and vegetables to CES. The results show that chlorpyrifos + carbendazim, carbofuran + carbendazim, imidacloprid + carbendazim, imidacloprid + dimethomorph, dimethoate + dimethomorph, prochloraz + carbendazim and imidacloprid + acetamiprid + carbendazim had synergistic effects under three concentration gradients, it indicated that most binary combinations containing carbendazim or imidacloprid had synergistic effects. Based on structure-activity relationship between pesticides and CES, pesticides with phosphate ester bonds had great toxicity to CES, or though they have no toxicity to CES alone, they showed a strong synergistic effect when mixed with other pesticides. Pesticides with amide or ester bond had medium toxicity and little synergistic effect. Pesticides with urea, carbamate or nitrite nitrogen group had little or no toxicity, while there was a strong synergistic effect after mixing with other pesticides. The test method and results in this study can provide scientific basis for risk assessment of cumulative exposure to mixed pesticide residues.","PeriodicalId":15670,"journal":{"name":"Journal of Environmental Science and Health, Part B","volume":"71 1","pages":"305 - 315"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting the combined toxicity of 18 binary and 24 ternary pesticide combinations to carboxylesterase based on fluorescence probe technology\",\"authors\":\"Xinyue Zhu, Lisen Chen, Tao Liu, Shengui He, Xin Zhao, Yinong Tian, Yanjun Fang, Jingnan Cui\",\"doi\":\"10.1080/03601234.2022.2049158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A rapid test method for the determination of pesticide toxicity was established by using carboxylesterase (CES) and fluorescence probe ACE-NH based on the principle of enzyme inhibition, and this method was applied to detect the combined toxicity of 18 binary and 24 ternary pesticide combinations commonly used for fruits and vegetables to CES. The results show that chlorpyrifos + carbendazim, carbofuran + carbendazim, imidacloprid + carbendazim, imidacloprid + dimethomorph, dimethoate + dimethomorph, prochloraz + carbendazim and imidacloprid + acetamiprid + carbendazim had synergistic effects under three concentration gradients, it indicated that most binary combinations containing carbendazim or imidacloprid had synergistic effects. Based on structure-activity relationship between pesticides and CES, pesticides with phosphate ester bonds had great toxicity to CES, or though they have no toxicity to CES alone, they showed a strong synergistic effect when mixed with other pesticides. Pesticides with amide or ester bond had medium toxicity and little synergistic effect. Pesticides with urea, carbamate or nitrite nitrogen group had little or no toxicity, while there was a strong synergistic effect after mixing with other pesticides. The test method and results in this study can provide scientific basis for risk assessment of cumulative exposure to mixed pesticide residues.\",\"PeriodicalId\":15670,\"journal\":{\"name\":\"Journal of Environmental Science and Health, Part B\",\"volume\":\"71 1\",\"pages\":\"305 - 315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health, Part B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03601234.2022.2049158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health, Part B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03601234.2022.2049158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting the combined toxicity of 18 binary and 24 ternary pesticide combinations to carboxylesterase based on fluorescence probe technology
Abstract A rapid test method for the determination of pesticide toxicity was established by using carboxylesterase (CES) and fluorescence probe ACE-NH based on the principle of enzyme inhibition, and this method was applied to detect the combined toxicity of 18 binary and 24 ternary pesticide combinations commonly used for fruits and vegetables to CES. The results show that chlorpyrifos + carbendazim, carbofuran + carbendazim, imidacloprid + carbendazim, imidacloprid + dimethomorph, dimethoate + dimethomorph, prochloraz + carbendazim and imidacloprid + acetamiprid + carbendazim had synergistic effects under three concentration gradients, it indicated that most binary combinations containing carbendazim or imidacloprid had synergistic effects. Based on structure-activity relationship between pesticides and CES, pesticides with phosphate ester bonds had great toxicity to CES, or though they have no toxicity to CES alone, they showed a strong synergistic effect when mixed with other pesticides. Pesticides with amide or ester bond had medium toxicity and little synergistic effect. Pesticides with urea, carbamate or nitrite nitrogen group had little or no toxicity, while there was a strong synergistic effect after mixing with other pesticides. The test method and results in this study can provide scientific basis for risk assessment of cumulative exposure to mixed pesticide residues.