可解释图像分类模型的比较研究

IF 0.9 Q4 TELECOMMUNICATIONS
Adél Bajcsi, A. Bajcsi, Szabolcs Pável, Ábel Portik, Csanád Sándor, Annamária Szenkovits, Orsolya Vas, Z. Bodó, Lehel Csató
{"title":"可解释图像分类模型的比较研究","authors":"Adél Bajcsi, A. Bajcsi, Szabolcs Pável, Ábel Portik, Csanád Sándor, Annamária Szenkovits, Orsolya Vas, Z. Bodó, Lehel Csató","doi":"10.36244/icj.2023.5.4","DOIUrl":null,"url":null,"abstract":"Explainable models in machine learning are increas- ingly popular due to the interpretability-favoring architectural features that help human understanding and interpretation of the decisions made by the model. Although using this type of model – similarly to “robustification” – might degrade prediction accuracy, a better understanding of decisions can greatly aid in the root cause analysis of failures of complex models, like deep neural networks. In this work, we experimentally compare three self-explainable image classification models on two datasets – MNIST and BDD100K –, briefly describing their operation and highlighting their characteristics. We evaluate the backbone models to be able to observe the level of deterioration of the prediction accuracy due to the interpretable module introduced, if any. To improve one of the models studied, we propose modifications to the loss function for learning and suggest a framework for automatic assessment of interpretability by examining the linear separability of the prototypes obtained.","PeriodicalId":42504,"journal":{"name":"Infocommunications Journal","volume":"22 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study of Interpretable Image Classification Models\",\"authors\":\"Adél Bajcsi, A. Bajcsi, Szabolcs Pável, Ábel Portik, Csanád Sándor, Annamária Szenkovits, Orsolya Vas, Z. Bodó, Lehel Csató\",\"doi\":\"10.36244/icj.2023.5.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable models in machine learning are increas- ingly popular due to the interpretability-favoring architectural features that help human understanding and interpretation of the decisions made by the model. Although using this type of model – similarly to “robustification” – might degrade prediction accuracy, a better understanding of decisions can greatly aid in the root cause analysis of failures of complex models, like deep neural networks. In this work, we experimentally compare three self-explainable image classification models on two datasets – MNIST and BDD100K –, briefly describing their operation and highlighting their characteristics. We evaluate the backbone models to be able to observe the level of deterioration of the prediction accuracy due to the interpretable module introduced, if any. To improve one of the models studied, we propose modifications to the loss function for learning and suggest a framework for automatic assessment of interpretability by examining the linear separability of the prototypes obtained.\",\"PeriodicalId\":42504,\"journal\":{\"name\":\"Infocommunications Journal\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infocommunications Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36244/icj.2023.5.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infocommunications Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.5.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习中的可解释模型越来越受欢迎,因为可解释性倾向于帮助人类理解和解释模型做出的决定的架构特征。尽管使用这种类型的模型——类似于“鲁棒化”——可能会降低预测的准确性,但更好地理解决策可以极大地帮助分析复杂模型(如深度神经网络)失败的根本原因。本文在MNIST和BDD100K两个数据集上实验比较了三种自解释图像分类模型,简要描述了它们的工作原理,突出了它们的特点。我们对骨干模型进行了评估,以便能够观察到由于引入了可解释模块(如果有的话)而导致的预测精度的恶化程度。为了改进所研究的一个模型,我们提出了对学习损失函数的修改,并提出了一个通过检查所获得的原型的线性可分性来自动评估可解释性的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Interpretable Image Classification Models
Explainable models in machine learning are increas- ingly popular due to the interpretability-favoring architectural features that help human understanding and interpretation of the decisions made by the model. Although using this type of model – similarly to “robustification” – might degrade prediction accuracy, a better understanding of decisions can greatly aid in the root cause analysis of failures of complex models, like deep neural networks. In this work, we experimentally compare three self-explainable image classification models on two datasets – MNIST and BDD100K –, briefly describing their operation and highlighting their characteristics. We evaluate the backbone models to be able to observe the level of deterioration of the prediction accuracy due to the interpretable module introduced, if any. To improve one of the models studied, we propose modifications to the loss function for learning and suggest a framework for automatic assessment of interpretability by examining the linear separability of the prototypes obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infocommunications Journal
Infocommunications Journal TELECOMMUNICATIONS-
CiteScore
1.90
自引率
27.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信