电路极限和器件噪声对RRAM条件生成对抗网络的影响

Shengyu Bao, Zongwei Wang, Tianyi Liu, Daqin Chen, Yimao Cai, Ru Huang
{"title":"电路极限和器件噪声对RRAM条件生成对抗网络的影响","authors":"Shengyu Bao, Zongwei Wang, Tianyi Liu, Daqin Chen, Yimao Cai, Ru Huang","doi":"10.1109/CSTIC49141.2020.9282546","DOIUrl":null,"url":null,"abstract":"In this work, a Conditional Generative Adversarial Network (CGAN) [1] is demonstrated based on the Resistive Random Access Memory (RRAM). During training, the read noise of RRAM is utilized as a random bias source to enrich the diversity of the generator in CGAN. Further, we evaluate the impact of both read noise (RRAM as weight storage cell) and the resolution of the AD/DA circuit on the performance of CGAN through a comprehensive simulation.","PeriodicalId":6848,"journal":{"name":"2020 China Semiconductor Technology International Conference (CSTIC)","volume":"19 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Circuit Limit and Device Noise on RRAM Based Conditional Generative Adversarial Network\",\"authors\":\"Shengyu Bao, Zongwei Wang, Tianyi Liu, Daqin Chen, Yimao Cai, Ru Huang\",\"doi\":\"10.1109/CSTIC49141.2020.9282546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a Conditional Generative Adversarial Network (CGAN) [1] is demonstrated based on the Resistive Random Access Memory (RRAM). During training, the read noise of RRAM is utilized as a random bias source to enrich the diversity of the generator in CGAN. Further, we evaluate the impact of both read noise (RRAM as weight storage cell) and the resolution of the AD/DA circuit on the performance of CGAN through a comprehensive simulation.\",\"PeriodicalId\":6848,\"journal\":{\"name\":\"2020 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"19 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC49141.2020.9282546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC49141.2020.9282546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,基于电阻式随机存取存储器(RRAM)演示了条件生成对抗网络(CGAN)[1]。在训练过程中,利用随机随机存储器的读噪声作为随机偏置源,丰富了CGAN发生器的多样性。此外,我们通过全面的仿真评估了读取噪声(RRAM作为权重存储单元)和AD/DA电路的分辨率对CGAN性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Circuit Limit and Device Noise on RRAM Based Conditional Generative Adversarial Network
In this work, a Conditional Generative Adversarial Network (CGAN) [1] is demonstrated based on the Resistive Random Access Memory (RRAM). During training, the read noise of RRAM is utilized as a random bias source to enrich the diversity of the generator in CGAN. Further, we evaluate the impact of both read noise (RRAM as weight storage cell) and the resolution of the AD/DA circuit on the performance of CGAN through a comprehensive simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信