幂零型点秩1 Hopf代数的McKay矩阵

Pub Date : 2023-08-29 DOI:10.1142/s100538672300038x
Liufeng Cao, Xuejun Xia, Libin Li
{"title":"幂零型点秩1 Hopf代数的McKay矩阵","authors":"Liufeng Cao, Xuejun Xia, Libin Li","doi":"10.1142/s100538672300038x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite-dimensional pointed rank one Hopf algebra of nilpotent type over a finite group [Formula: see text]. In this paper, we investigate the McKay matrix [Formula: see text] of [Formula: see text] for tensoring with the 2-dimensional indecomposable [Formula: see text]-module [Formula: see text]. It turns out that the characteristic polynomial, eigenvalues and eigenvectors of [Formula: see text] are related to the character table of the finite group [Formula: see text] and a kind of generalized Fibonacci polynomial. Moreover, we construct some eigenvectors of each eigenvalue for [Formula: see text] by using the factorization of the generalized Fibonacci polynomial. As an example, we explicitly compute the characteristic polynomial and eigenvalues of [Formula: see text] and give all eigenvectors of each eigenvalue for [Formula: see text] when [Formula: see text] is a dihedral group of order [Formula: see text].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"McKay Matrices for Pointed Rank One Hopf Algebras of Nilpotent Type\",\"authors\":\"Liufeng Cao, Xuejun Xia, Libin Li\",\"doi\":\"10.1142/s100538672300038x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite-dimensional pointed rank one Hopf algebra of nilpotent type over a finite group [Formula: see text]. In this paper, we investigate the McKay matrix [Formula: see text] of [Formula: see text] for tensoring with the 2-dimensional indecomposable [Formula: see text]-module [Formula: see text]. It turns out that the characteristic polynomial, eigenvalues and eigenvectors of [Formula: see text] are related to the character table of the finite group [Formula: see text] and a kind of generalized Fibonacci polynomial. Moreover, we construct some eigenvectors of each eigenvalue for [Formula: see text] by using the factorization of the generalized Fibonacci polynomial. As an example, we explicitly compute the characteristic polynomial and eigenvalues of [Formula: see text] and give all eigenvectors of each eigenvalue for [Formula: see text] when [Formula: see text] is a dihedral group of order [Formula: see text].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s100538672300038x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s100538672300038x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是有限群上幂零型的有限维点秩Hopf代数[公式:见文]。本文研究了二维不可分解[公式:见文]-模[公式:见文]的[公式:见文]张拉的McKay矩阵[公式:见文]。结果表明[公式:见文]的特征多项式、特征值和特征向量与有限群的特征表[公式:见文]和一类广义斐波那契多项式有关。此外,我们利用广义Fibonacci多项式的因式分解构造了[公式:见文]的每个特征值的一些特征向量。作为一个例子,当[公式:见文]是一个有序的二面体群[公式:见文]时,我们显式地计算[公式:见文]的特征多项式和特征值,并给出[公式:见文]的每个特征值的所有特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
McKay Matrices for Pointed Rank One Hopf Algebras of Nilpotent Type
Let [Formula: see text] be a finite-dimensional pointed rank one Hopf algebra of nilpotent type over a finite group [Formula: see text]. In this paper, we investigate the McKay matrix [Formula: see text] of [Formula: see text] for tensoring with the 2-dimensional indecomposable [Formula: see text]-module [Formula: see text]. It turns out that the characteristic polynomial, eigenvalues and eigenvectors of [Formula: see text] are related to the character table of the finite group [Formula: see text] and a kind of generalized Fibonacci polynomial. Moreover, we construct some eigenvectors of each eigenvalue for [Formula: see text] by using the factorization of the generalized Fibonacci polynomial. As an example, we explicitly compute the characteristic polynomial and eigenvalues of [Formula: see text] and give all eigenvectors of each eigenvalue for [Formula: see text] when [Formula: see text] is a dihedral group of order [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信