融合多源多时间图像的去云方法

Chengyue Zhang, Zhiwei Li, Qing Cheng, Xinghua Li, Huanfeng Shen
{"title":"融合多源多时间图像的去云方法","authors":"Chengyue Zhang, Zhiwei Li, Qing Cheng, Xinghua Li, Huanfeng Shen","doi":"10.1109/IGARSS.2017.8127522","DOIUrl":null,"url":null,"abstract":"Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multitemporal images for cloud removal. The experimental results show that the proposed method is able to obtain more accurate results than the current multitemporal-based methods, especially when the multi-temporal images suffer from significant changes.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"52 1","pages":"2577-2580"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cloud removal by fusing multi-source and multi-temporal images\",\"authors\":\"Chengyue Zhang, Zhiwei Li, Qing Cheng, Xinghua Li, Huanfeng Shen\",\"doi\":\"10.1109/IGARSS.2017.8127522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multitemporal images for cloud removal. The experimental results show that the proposed method is able to obtain more accurate results than the current multitemporal-based methods, especially when the multi-temporal images suffer from significant changes.\",\"PeriodicalId\":6466,\"journal\":{\"name\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"volume\":\"52 1\",\"pages\":\"2577-2580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2017.8127522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

遥感图像经常受到云层的影响。在遥感图像的许多应用中都需要去除云层。基于多时间的方法是应对厚云的有效方法。本文对现有的基于多时间的方法进行了总结和实验比较。在此基础上,提出了一种基于泊松平差的时空融合方法,融合多传感器和多时间图像进行云去除。实验结果表明,该方法能够获得比当前基于多时相的方法更精确的结果,特别是当多时相图像变化较大时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud removal by fusing multi-source and multi-temporal images
Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multitemporal images for cloud removal. The experimental results show that the proposed method is able to obtain more accurate results than the current multitemporal-based methods, especially when the multi-temporal images suffer from significant changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信