{"title":"由五对角酉矩阵驱动的量子行走的极限分布","authors":"T. Machida","doi":"10.26421/QIC21.1-2-2","DOIUrl":null,"url":null,"abstract":"In this paper, we work on a quantum walk whose system is manipulated by a five-diagonal unitary matrix, and present long-time limit distributions. The quantum walk launches off a location and delocalizes in distribution as its system is getting updated. The fivediagonal matrix contains a phase term and the quantum walk becomes a standard coined walk when the phase term is fixed at special values. Or, the phase term gives an effect on the quantum walk. As a result, we will see an explicit form of a long-time limit distribution for a quantum walk driven by the matrix, and thanks to the exact form, we understand how the quantum walker approximately distributes in space after the long-time evolution has been executed on the walk.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"70 1","pages":"19-36"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A limit distribution for a quantum walk driven by a five-diagonal unitary matrix\",\"authors\":\"T. Machida\",\"doi\":\"10.26421/QIC21.1-2-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we work on a quantum walk whose system is manipulated by a five-diagonal unitary matrix, and present long-time limit distributions. The quantum walk launches off a location and delocalizes in distribution as its system is getting updated. The fivediagonal matrix contains a phase term and the quantum walk becomes a standard coined walk when the phase term is fixed at special values. Or, the phase term gives an effect on the quantum walk. As a result, we will see an explicit form of a long-time limit distribution for a quantum walk driven by the matrix, and thanks to the exact form, we understand how the quantum walker approximately distributes in space after the long-time evolution has been executed on the walk.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"70 1\",\"pages\":\"19-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.1-2-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.1-2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A limit distribution for a quantum walk driven by a five-diagonal unitary matrix
In this paper, we work on a quantum walk whose system is manipulated by a five-diagonal unitary matrix, and present long-time limit distributions. The quantum walk launches off a location and delocalizes in distribution as its system is getting updated. The fivediagonal matrix contains a phase term and the quantum walk becomes a standard coined walk when the phase term is fixed at special values. Or, the phase term gives an effect on the quantum walk. As a result, we will see an explicit form of a long-time limit distribution for a quantum walk driven by the matrix, and thanks to the exact form, we understand how the quantum walker approximately distributes in space after the long-time evolution has been executed on the walk.